论文标题

SharpContour:一种基于轮廓的边界完善方法,以进行有效,准确的实例分割

SharpContour: A Contour-based Boundary Refinement Approach for Efficient and Accurate Instance Segmentation

论文作者

Zhu, Chenming, Zhang, Xuanye, Li, Yanran, Qiu, Liangdong, Han, Kai, Han, Xiaoguang

论文摘要

实例分割已经实现了出色的性能,但是边界区域的质量仍然不令人满意,这导致对边界改进的关注不断增加。为了实际使用,需要一个理想的后处理精炼方案必须准确,通用和高效。但是,大多数现有方法都提出了像素优化的精炼,该方法要么针对不同的骨干模型引入了庞大的计算成本或设计。基于轮廓的模型有效且通用,可以与任何现有的分割方法合并,但是它们通常会产生过度光滑的轮廓,并且倾向于在角落区域失败。在本文中,我们提出了一种有效的基于轮廓的边界改进方法,即SharpContour,以应对边界区域的分割。我们设计了一个新颖的轮廓演化过程,并设计了实例感知点分类器。我们的方法通过以离散方式更新偏移来迭代轮廓。 SharpContour与现有的轮廓演化方法不同,估计每个偏移量的偏移量更高,以预测它可以预测更清晰和准确的轮廓。值得注意的是,我们的方法是通用的,可以与以较小的计算成本无缝地使用不同的现有模型。实验表明,SharpContour可以在保持高效率的同时获得竞争性获得

Excellent performance has been achieved on instance segmentation but the quality on the boundary area remains unsatisfactory, which leads to a rising attention on boundary refinement. For practical use, an ideal post-processing refinement scheme are required to be accurate, generic and efficient. However, most of existing approaches propose pixel-wise refinement, which either introduce a massive computation cost or design specifically for different backbone models. Contour-based models are efficient and generic to be incorporated with any existing segmentation methods, but they often generate over-smoothed contour and tend to fail on corner areas. In this paper, we propose an efficient contour-based boundary refinement approach, named SharpContour, to tackle the segmentation of boundary area. We design a novel contour evolution process together with an Instance-aware Point Classifier. Our method deforms the contour iteratively by updating offsets in a discrete manner. Differing from existing contour evolution methods, SharpContour estimates each offset more independently so that it predicts much sharper and accurate contours. Notably, our method is generic to seamlessly work with diverse existing models with a small computational cost. Experiments show that SharpContour achieves competitive gains whilst preserving high efficiency

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源