论文标题

通过周期性自我调节进行面部解析的脱钩多任务学习

Decoupled Multi-task Learning with Cyclical Self-Regulation for Face Parsing

论文作者

Zheng, Qingping, Deng, Jiankang, Zhu, Zheng, Li, Ying, Zafeiriou, Stefanos

论文摘要

本文探讨了典型失败案例(例如,空间不一致和边界混乱)背后的内在因素,这是由现有的最新方法在面部解析中产生的。为了解决这些问题,我们提出了一种新颖的脱钩多任务学习,并通过周期性自我调节(DML-CSR)进行面部解析。具体而言,DML-CSR设计了一个多任务模型,该模型包括面部解析,二进制边缘和类别边缘检测。这些任务仅共享低级编码器权重,而没有彼此之间的高级交互,从而使推理阶段将辅助模块从整个网络中解脱出来。为了解决空间不一致,我们开发了动态双图卷积网络,以捕获全局上下文信息,而无需使用任何额外的汇总操作。为了处理单个面部和多个面部场景中的边界混乱,我们利用二进制和类别边缘检测来共同获得人脸的通用几何结构和细粒的语义线索。此外,为了防止嘈杂的标签在训练期间降低模型的概括,提出了周期性的自我调节以自我启动几个模型实例,以获取新的模型,然后通过交替的迭代来使用随后的模型来自我缩减。实验表明,我们的方法在Helen,Celebamask-HQ和LAPA数据集上实现了新的最新性能。源代码可从https://github.com/deepinsight/insightface/tree/master/parsing/dml_csr获得。

This paper probes intrinsic factors behind typical failure cases (e.g. spatial inconsistency and boundary confusion) produced by the existing state-of-the-art method in face parsing. To tackle these problems, we propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation (DML-CSR) for face parsing. Specifically, DML-CSR designs a multi-task model which comprises face parsing, binary edge, and category edge detection. These tasks only share low-level encoder weights without high-level interactions between each other, enabling to decouple auxiliary modules from the whole network at the inference stage. To address spatial inconsistency, we develop a dynamic dual graph convolutional network to capture global contextual information without using any extra pooling operation. To handle boundary confusion in both single and multiple face scenarios, we exploit binary and category edge detection to jointly obtain generic geometric structure and fine-grained semantic clues of human faces. Besides, to prevent noisy labels from degrading model generalization during training, cyclical self-regulation is proposed to self-ensemble several model instances to get a new model and the resulting model then is used to self-distill subsequent models, through alternating iterations. Experiments show that our method achieves the new state-of-the-art performance on the Helen, CelebAMask-HQ, and Lapa datasets. The source code is available at https://github.com/deepinsight/insightface/tree/master/parsing/dml_csr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源