论文标题
随着时变的调解人,治疗和混杂因素的有效而灵活的因果中介
Efficient and flexible causal mediation with time-varying mediators, treatments, and confounders
论文作者
论文摘要
已经提出了介入效应作为解决受暴露影响的调解结果混杂因素下自然(IN)直接影响的无法识别的解决方案。这些混杂因素是随着时变的暴露和调解人的研究的内在特征,但是对时变案例的介入效果框架的概括很少在文献中受到关注。我们提出了一般纵向数据结构中介入效应的鉴定结果,该结果允许在治疗结果,治疗剂和调解结果关系的规范中灵活。识别是根据标准的无尚未确定的和阳性假设实现的。我们还基于有效影响函数(EIF)提供了对识别功能的性质的理论和计算研究。我们使用EIF提出了一种顺序回归估计算法,该算法可产生双重稳定性,$ \ sqrt {n} $ - 一致的,渐近的高斯和有效的估计器在缓慢的收敛速率下用于所使用的回归算法。这允许使用灵活的机器学习进行回归,同时允许通过置信区间和p值进行不确定性量化。在GitHub上提供了一个免费的开源\ Texttt {R}软件包,可以在GitHub上提供。我们将提出的估计量应用于两种药物的阿片类药物使用障碍的比较有效性试验的应用。在应用程序中,我们估计两种治疗方法在随后使用阿片类药物的风险中的差异是由渴望症状介导的。
Interventional effects have been proposed as a solution to the unidentifiability of natural (in)direct effects under mediator-outcome confounders affected by the exposure. Such confounders are an intrinsic characteristic of studies with time-varying exposures and mediators, yet the generalization of the interventional effect framework to the time-varying case has received little attention in the literature. We present an identification result for interventional effects in a general longitudinal data structure that allows flexibility in the specification of treatment-outcome, treatment-mediator, and mediator-outcome relationships. Identification is achieved under the standard no-unmeasured-confounders and positivity assumptions. We also present a theoretical and computational study of the properties of the identifying functional based on the efficient influence function (EIF). We use the EIF to propose a sequential regression estimation algorithm that yields doubly robust, $\sqrt{n}$-consistent, asymptotically Gaussian, and efficient estimators under slow convergence rates for the regression algorithms used. This allows the use of flexible machine learning for regression while permitting uncertainty quantification through confidence intervals and p-values. A free and open source \texttt{R} package implementing our proposed estimators is made available on GitHub. We apply the proposed estimator to an application from a comparative effectiveness trial of two medications for opioid use disorder. In the application, we estimate the extent to which differences between the two treatments' on subsequent risk of opioid use is mediated by craving symptoms.