论文标题

部分可观测时空混沌系统的无模型预测

Robust Speaker Recognition with Transformers Using wav2vec 2.0

论文作者

Novoselov, Sergey, Lavrentyeva, Galina, Avdeeva, Anastasia, Volokhov, Vladimir, Gusev, Aleksei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent advances in unsupervised speech representation learning discover new approaches and provide new state-of-the-art for diverse types of speech processing tasks. This paper presents an investigation of using wav2vec 2.0 deep speech representations for the speaker recognition task. The proposed fine-tuning procedure of wav2vec 2.0 with simple TDNN and statistic pooling back-end using additive angular margin loss allows to obtain deep speaker embedding extractor that is well-generalized across different domains. It is concluded that Contrastive Predictive Coding pretraining scheme efficiently utilizes the power of unlabeled data, and thus opens the door to powerful transformer-based speaker recognition systems. The experimental results obtained in this study demonstrate that fine-tuning can be done on relatively small sets and a clean version of data. Using data augmentation during fine-tuning provides additional performance gains in speaker verification. In this study speaker recognition systems were analyzed on a wide range of well-known verification protocols: VoxCeleb1 cleaned test set, NIST SRE 18 development set, NIST SRE 2016 and NIST SRE 2019 evaluation set, VOiCES evaluation set, NIST 2021 SRE, and CTS challenges sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源