论文标题

动态网络中更改点检测的图形相似性学习

Graph similarity learning for change-point detection in dynamic networks

论文作者

Sulem, Deborah, Kenlay, Henry, Cucuringu, Mihai, Dong, Xiaowen

论文摘要

动态网络无处不在,用于建模顺序的图形结构数据,例如脑连接组,人群流和消息交换。在这项工作中,我们将动态网络视为图形快照的时间序列,旨在检测其结构的突然变化。此任务通常被称为网络更改点检测,并且具有许多应用程序,例如欺诈检测或物理运动监视。利用图形神经网络模型,我们设计了一种可以执行在线网络更改点检测的方法,该检测可以适应特定的网络域并无需延迟而定位更改。我们方法的主要新颖性是使用暹罗图神经网络体系结构来学习数据驱动的图形相似性功能,该功能可以有效地比较当前图及其最近的历史记录。重要的是,我们的方法不需要关于网络生成分布的先验知识,并且对变更点的类型不可知。此外,它可以应用于各种网络,其中包括边缘权重和节点属性。我们在合成和真实数据上显示,我们的方法享有许多好处:它能够在不同类型的变更点设置中学习足够的图形相似性功能,以便在线网络更改点检测,并且需要较短的数据记录来检测更改的变化,而不是大多数现有的最新目前的先进基地。

Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g., brain connectome, population flows and messages exchanges. In this work, we consider dynamic networks that are temporal sequences of graph snapshots, and aim at detecting abrupt changes in their structure. This task is often termed network change-point detection and has numerous applications, such as fraud detection or physical motion monitoring. Leveraging a graph neural network model, we design a method to perform online network change-point detection that can adapt to the specific network domain and localise changes with no delay. The main novelty of our method is to use a siamese graph neural network architecture for learning a data-driven graph similarity function, which allows to effectively compare the current graph and its recent history. Importantly, our method does not require prior knowledge on the network generative distribution and is agnostic to the type of change-points; moreover, it can be applied to a large variety of networks, that include for instance edge weights and node attributes. We show on synthetic and real data that our method enjoys a number of benefits: it is able to learn an adequate graph similarity function for performing online network change-point detection in diverse types of change-point settings, and requires a shorter data history to detect changes than most existing state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源