论文标题

通过神经二分图匹配的多机器人主动映射

Multi-Robot Active Mapping via Neural Bipartite Graph Matching

论文作者

Ye, Kai, Dong, Siyan, Fan, Qingnan, Wang, He, Yi, Li, Xia, Fei, Wang, Jue, Chen, Baoquan

论文摘要

我们研究了多机器人主动映射的问题,该映射旨在以最短的时间步骤进行完整的场景图构建。这个问题的关键在于目标位置估计以实现更有效的机器人运动。以前的方法要么通过近视解决方案选择前沿作为目标位置,该解决方案会阻碍时间效率,要么通过强化学习来最大化长期价值以直接回归目标位置,但不能保证完整的地图构建。在本文中,我们提出了一种新颖的算法,即神经compapping,它利用了两种方法。我们将问题减少到两分图匹配,该图形建立了两个图之间的节点对应关系,表示机器人和前沿。我们介绍了一个多重图形神经网络(MGNN),该神经网络学习神经距离以填充亲和力矩阵以进行更有效的图形匹配。我们通过最大程度地提高了有利于时间效率的长期值和通过增强学习的映射完整性来优化MGNN。我们将算法与几种最先进的多机主动映射方法和适应的加固学习基线进行比较。实验结果表明,当仅接受9个室内场景训练时,我们算法在各种室内场景和看不见的机器人中具有出色的性能和出色的概括能力。

We study the problem of multi-robot active mapping, which aims for complete scene map construction in minimum time steps. The key to this problem lies in the goal position estimation to enable more efficient robot movements. Previous approaches either choose the frontier as the goal position via a myopic solution that hinders the time efficiency, or maximize the long-term value via reinforcement learning to directly regress the goal position, but does not guarantee the complete map construction. In this paper, we propose a novel algorithm, namely NeuralCoMapping, which takes advantage of both approaches. We reduce the problem to bipartite graph matching, which establishes the node correspondences between two graphs, denoting robots and frontiers. We introduce a multiplex graph neural network (mGNN) that learns the neural distance to fill the affinity matrix for more effective graph matching. We optimize the mGNN with a differentiable linear assignment layer by maximizing the long-term values that favor time efficiency and map completeness via reinforcement learning. We compare our algorithm with several state-of-the-art multi-robot active mapping approaches and adapted reinforcement-learning baselines. Experimental results demonstrate the superior performance and exceptional generalization ability of our algorithm on various indoor scenes and unseen number of robots, when only trained with 9 indoor scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源