论文标题

PIE-NET:用于固有图像分解的光度不变边缘引导网络

PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic Image Decomposition

论文作者

Das, Partha, Karaoglu, Sezer, Gevers, Theo

论文摘要

固有的图像分解是从图像中恢复图像形成组件(反射率和阴影)的过程。先前的方法采用明确的先验来限制问题或由其损失(深度学习)提出的隐式约束。这些方法可能会受到强烈的照明条件的负面影响,从而导致阴影反射泄漏。 因此,在本文中,提出了一种固有图像分解,提出了端到端边缘驱动的混合CNN方法。边缘对应于照明不变梯度。为了处理硬性负面照明过渡,采用了分层方法,包括全球和本地精炼层。我们利用注意力层进一步加强学习过程。 进行了广泛的消融研究和大规模实验,表明它对边缘驱动的混合IID网络使用照明不变描述符是有益的,并且分开全球和本地提示有助于改善网络的性能。最后,结果表明,所提出的方法获得了最先进的性能状态,并能够很好地概括为现实世界的图像。可以在https://ivi.fnwi.uva.nl/cv/pienet/上找到带有验证模型,填充模型和网络代码的项目页面。

Intrinsic image decomposition is the process of recovering the image formation components (reflectance and shading) from an image. Previous methods employ either explicit priors to constrain the problem or implicit constraints as formulated by their losses (deep learning). These methods can be negatively influenced by strong illumination conditions causing shading-reflectance leakages. Therefore, in this paper, an end-to-end edge-driven hybrid CNN approach is proposed for intrinsic image decomposition. Edges correspond to illumination invariant gradients. To handle hard negative illumination transitions, a hierarchical approach is taken including global and local refinement layers. We make use of attention layers to further strengthen the learning process. An extensive ablation study and large scale experiments are conducted showing that it is beneficial for edge-driven hybrid IID networks to make use of illumination invariant descriptors and that separating global and local cues helps in improving the performance of the network. Finally, it is shown that the proposed method obtains state of the art performance and is able to generalise well to real world images. The project page with pretrained models, finetuned models and network code can be found at https://ivi.fnwi.uva.nl/cv/pienet/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源