论文标题
关于有限词的$ k $ - 力量的数量
On the number of $k$-powers in a finite word
论文作者
论文摘要
该注释是一种试图攻击弗雷恩克尔(Fraenkel)的猜想,辛普森(Simpson)在1998年表示,关于有限词中不同正方形的数量。通过计算(右)特殊因素的数量,我们在有限单词中给出了{\ em $ k $ - powers}数量的上限,用于任何整数$ k \ geq 3 $。由{\ em $ k $ -power},我们的意思是$ \ UnderBrace {uu ... u} _ {k \; \ text {times}} $。
This note is an attempt to attack a conjecture of Fraenkel and Simpson stated in 1998 concerning the number of distinct squares in a finite word. By counting the number of (right-)special factors, we give an upper bound of the number of {\em $k$-powers} in a finite word for any integer $k\geq 3$. By {\em $k$-power}, we mean a word of the form $\underbrace{uu...u}_{k \; \text{times}}$.