论文标题
时间镜头++:基于事件的框架插值与参数非线性流和多尺度融合
Time Lens++: Event-based Frame Interpolation with Parametric Non-linear Flow and Multi-scale Fusion
论文作者
论文摘要
最近,使用框架和基于事件的摄像机组合的视频框架插值在性能和记忆效率方面超过了基于图像的传统方法。但是,目前的方法仍然遭受(i)互补插值结果的脆弱图像水平融合,在融合图像中存在伪影的情况下失败,((ii)可能在时间上不一致且效率低下的运动估计程序,而插入的框架和(iii)不触发事件的低对比区域和(iii)对事件的触发触发事件,并不触发事件的情况。此外,以前的方法仅在由平面和遥远场景组成的数据集上进行了测试,这些场景不会捕获现实世界的全部复杂性。在这项工作中,我们通过引入多尺度特征级融合并从事件和图像中计算一击非线性帧跨帧运动来解决上述问题,这些运动可以有效地采样以进行图像翘曲。我们还收集了第一个大规模事件和框架数据集,该数据集由100多个具有深度变化的挑战性场景组成,并通过基于Beamsplitter的新实验设置捕获。我们表明,我们的方法可将重建质量提高到PSNR高达0.2 dB,而LPIPS得分最高可提高15%。
Recently, video frame interpolation using a combination of frame- and event-based cameras has surpassed traditional image-based methods both in terms of performance and memory efficiency. However, current methods still suffer from (i) brittle image-level fusion of complementary interpolation results, that fails in the presence of artifacts in the fused image, (ii) potentially temporally inconsistent and inefficient motion estimation procedures, that run for every inserted frame and (iii) low contrast regions that do not trigger events, and thus cause events-only motion estimation to generate artifacts. Moreover, previous methods were only tested on datasets consisting of planar and faraway scenes, which do not capture the full complexity of the real world. In this work, we address the above problems by introducing multi-scale feature-level fusion and computing one-shot non-linear inter-frame motion from events and images, which can be efficiently sampled for image warping. We also collect the first large-scale events and frames dataset consisting of more than 100 challenging scenes with depth variations, captured with a new experimental setup based on a beamsplitter. We show that our method improves the reconstruction quality by up to 0.2 dB in terms of PSNR and up to 15% in LPIPS score.