论文标题

连接,而不是崩溃:解释无监督域适应的对比度学习

Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation

论文作者

Shen, Kendrick, Jones, Robbie, Kumar, Ananya, Xie, Sang Michael, HaoChen, Jeff Z., Ma, Tengyu, Liang, Percy

论文摘要

我们考虑无监督的域适应性(UDA),其中使用来自源域(例如,照片)标记的数据,而来自目标域(例如草图)的未标记数据用于学习目标域的分类器。常规的UDA方法(例如,域对抗训练)学习域不变特征,以改善对目标域的概括。在本文中,我们表明对比的预训练(在未标记的源数据和目标数据上学习功能,然后在标记的源数据上进行微型,具有强大的UDA方法具有竞争力。但是,我们发现对比前训练并不学会与常规UDA直觉不同的域不变特征。从理论上讲,我们证明了对比的预训练可以学习在跨域下微调的特征,但仍通过解开域和类信息来概括到目标域。我们的结果表明,UDA不是必需的域不变性。我们从经验上验证了基准视觉数据集的理论。

We consider unsupervised domain adaptation (UDA), where labeled data from a source domain (e.g., photographs) and unlabeled data from a target domain (e.g., sketches) are used to learn a classifier for the target domain. Conventional UDA methods (e.g., domain adversarial training) learn domain-invariant features to improve generalization to the target domain. In this paper, we show that contrastive pre-training, which learns features on unlabeled source and target data and then fine-tunes on labeled source data, is competitive with strong UDA methods. However, we find that contrastive pre-training does not learn domain-invariant features, diverging from conventional UDA intuitions. We show theoretically that contrastive pre-training can learn features that vary subtantially across domains but still generalize to the target domain, by disentangling domain and class information. Our results suggest that domain invariance is not necessary for UDA. We empirically validate our theory on benchmark vision datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源