论文标题

使用多目标优化提高抽象性临床文本摘要的事实准确性

Improving the Factual Accuracy of Abstractive Clinical Text Summarization using Multi-Objective Optimization

论文作者

Alambo, Amanuel, Banerjee, Tanvi, Thirunarayan, Krishnaprasad, Cajita, Mia

论文摘要

尽管最近在抽象性摘要方面取得了进展,该进展应用于不同领域,包括新闻文章,科学文章和博客文章,但这些技术在临床文本摘要中的应用是有限的。这主要是由于缺乏大规模训练数据以及临床笔记的混乱/非结构化性质,而不是其他大规模培训数据以结构化或半结构化形式出现的领域。此外,临床文本摘要的探索最少和关键组成部分之一是临床摘要的事实准确性。这在医疗保健领域,尤其是心脏病学上特别重要,在源注释中保存事实的准确摘要产生对于患者的福祉至关重要。在这项研究中,我们提出了一个框架,用于提高使用知识引导的多目标优化对临床文本进行抽象性摘要的事实准确性。我们建议在培训期间共同优化我们提出的体系结构中的三个成本功能:生成损失,实体损失和知识损失,并评估1)我们为本研究收集的心力衰竭(HF)临床注释的拟议建筑; 2)两个基准数据集,印第安纳大学胸部X射线收藏(IU X射线)和模仿CXR,它们是公开可用的。我们尝试三个变压器编码器架构体系结构,并证明优化不同的损失函数会在实体级别的事实准确性方面提高性能。

While there has been recent progress in abstractive summarization as applied to different domains including news articles, scientific articles, and blog posts, the application of these techniques to clinical text summarization has been limited. This is primarily due to the lack of large-scale training data and the messy/unstructured nature of clinical notes as opposed to other domains where massive training data come in structured or semi-structured form. Further, one of the least explored and critical components of clinical text summarization is factual accuracy of clinical summaries. This is specifically crucial in the healthcare domain, cardiology in particular, where an accurate summary generation that preserves the facts in the source notes is critical to the well-being of a patient. In this study, we propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization. We propose to jointly optimize three cost functions in our proposed architecture during training: generative loss, entity loss and knowledge loss and evaluate the proposed architecture on 1) clinical notes of patients with heart failure (HF), which we collect for this study; and 2) two benchmark datasets, Indiana University Chest X-ray collection (IU X-Ray), and MIMIC-CXR, that are publicly available. We experiment with three transformer encoder-decoder architectures and demonstrate that optimizing different loss functions leads to improved performance in terms of entity-level factual accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源