论文标题

学习增加随意用户推荐

Learning to Augment for Casual User Recommendation

论文作者

Wang, Jianling, Le, Ya, Chang, Bo, Wang, Yuyan, Chi, Ed H., Chen, Minmin

论文摘要

进入推荐平台的用户在活动水平上是异质的。通常存在一组核心用户,他们会定期访问该平台,并在每次访问时消耗大量内容,而其他人则是随意的用户,他们倾向于偶尔访问该平台,每次都会少吃。结果,核心用户的消费活动通常主导用于学习的培训数据。由于核心用户可以表现出与休闲用户的不同活动模式,因此在历史用户活动数据上接受培训的推荐系统通常比核心用户的性能要差得多。为了弥合差距,我们提出了一个模型 - 不合Snostic框架l2aug,通过数据增强为休闲用户提高建议,而无需牺牲核心用户体验。 L2AUG由数据增强器提供动力,该数据增强器学会生成增强交互序列,以微调和优化为休闲用户的推荐系统的性能。在四个现实世界的公共数据集上,L2aug优于其他治疗方法,并为休闲和核心用户实现最佳的顺序推荐性能。我们还在在线仿真环境中测试了L2AUG,并具有实时反馈,以进一步验证其功效,并展示其在支持不同的增强操作方面的灵活性。

Users who come to recommendation platforms are heterogeneous in activity levels. There usually exists a group of core users who visit the platform regularly and consume a large body of content upon each visit, while others are casual users who tend to visit the platform occasionally and consume less each time. As a result, consumption activities from core users often dominate the training data used for learning. As core users can exhibit different activity patterns from casual users, recommender systems trained on historical user activity data usually achieve much worse performance on casual users than core users. To bridge the gap, we propose a model-agnostic framework L2Aug to improve recommendations for casual users through data augmentation, without sacrificing core user experience. L2Aug is powered by a data augmentor that learns to generate augmented interaction sequences, in order to fine-tune and optimize the performance of the recommendation system for casual users. On four real-world public datasets, L2Aug outperforms other treatment methods and achieves the best sequential recommendation performance for both casual and core users. We also test L2Aug in an online simulation environment with real-time feedback to further validate its efficacy, and showcase its flexibility in supporting different augmentation actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源