论文标题
A-ACT:通过循环转换的行动预期
A-ACT: Action Anticipation through Cycle Transformations
论文作者
论文摘要
尽管最近的行动期望引起了很多研究的兴趣,但大多数作品仅通过观察到的视觉提示直接预测未来的行动。在这项工作中,我们退后一步,分析了人类如何预测未来的能力,可以转移到机器学习算法中。要将这种能力纳入智能系统中,一个值得考虑的问题是我们如何预期?是通过预测过去经验的未来行动吗?还是通过基于当前的线索模拟可能的方案?一项关于人类心理学的最新研究解释说,在预期发生的时,人的大脑在这两个系统上都依靠。在这项工作中,我们研究了每个系统对行动预期任务的影响,并引入范式将它们整合到学习框架中。我们认为,通过利用心理预期模型设计的智能系统将在人类行动预测的任务上做出更细微的工作。此外,我们在特征和语义标签空间的时间维度中引入了循环转换,以灌输基于预测未来的过去动作推理的人类能力。关于Epic-Kitchen,早餐和50Salads数据集的实验表明,使用两个系统的组合和周期转换的动作预期模型对各种最新方法的方法都有利。
While action anticipation has garnered a lot of research interest recently, most of the works focus on anticipating future action directly through observed visual cues only. In this work, we take a step back to analyze how the human capability to anticipate the future can be transferred to machine learning algorithms. To incorporate this ability in intelligent systems a question worth pondering upon is how exactly do we anticipate? Is it by anticipating future actions from past experiences? Or is it by simulating possible scenarios based on cues from the present? A recent study on human psychology explains that, in anticipating an occurrence, the human brain counts on both systems. In this work, we study the impact of each system for the task of action anticipation and introduce a paradigm to integrate them in a learning framework. We believe that intelligent systems designed by leveraging the psychological anticipation models will do a more nuanced job at the task of human action prediction. Furthermore, we introduce cyclic transformation in the temporal dimension in feature and semantic label space to instill the human ability of reasoning of past actions based on the predicted future. Experiments on Epic-Kitchen, Breakfast, and 50Salads dataset demonstrate that the action anticipation model learned using a combination of the two systems along with the cycle transformation performs favorably against various state-of-the-art approaches.