论文标题

基于近似顺序的隐式解释指标

Implicit-Explicit Error Indicator based on Approximation Order

论文作者

Jančič, Mitja, Strniša, Filip, Kosec, Gregor

论文摘要

凭借我们可以使用的巨大计算能力,部分微分方程(PDE)的数值解决方案已成为现代计算科学家的日常任务。但是,现实生活中的问题的复杂性是使得不存在的解决方案。这使得很难验证数值获得的解决方案,因此在这种情况下,良好的错误估计至关重要。它允许用户识别计算域中有问题的区域,这些区域可能影响数值方法的稳定性和准确性。然后可以通过\ textit {h} - 或\ textit {p} - 适应过程来补救此类区域。在本文中,我们建议通过在每种情况下使用不同的近似顺序隐式和明确地解决相同的管理问题来估计数值解决方案的误差。我们证明了与可拖动解决方案的合成二维泊松问题解决方案的新提出的误差指标,以便于验证。我们表明,提出的错误指示器具有较高误差区域的良好潜力。

With the immense computing power at our disposal, the numerical solution of partial differential equations (PDEs) is becoming a day-to-day task for modern computational scientists. However, the complexity of real-life problems is such that tractable solutions do not exist. This makes it difficult to validate the numerically obtained solution, so good error estimation is crucial in such cases. It allows the user to identify problematic areas in the computational domain that may affect the stability and accuracy of the numerical method. Such areas can then be remedied by either \textit{h}- or \textit{p}-adaptive procedures. In this paper, we propose to estimate the error of the numerical solution by solving the same governing problem implicitly and explicitly, using a different approximation order in each case. We demonstrate the newly proposed error indicator on the solution of a synthetic two-dimensional Poisson problem with tractable solution for easier validation. We show that the proposed error indicator has good potential for locating areas of high error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源