论文标题
围绕KTN黑洞的相对论增生流量的研究
Study of relativistic accretion flow around KTN black hole with shocks
论文作者
论文摘要
我们介绍了在存在和不存在冲击波的情况下,围绕Kerr-taub-nut(KTN)黑洞周围的低角度动量,无粘性,对流积聚流的全球解决方案。这些解决方案是通过求解ktn时空中相对论积聚流的管理方程来获得的,该方程的特征是Kerr参数($ a _ {\ rm k} $)和螺母参数($ n $)。在积聚期间,旋转流量经验离心屏障,最终在满足相对论冲击条件下最终触发了不连续的冲击转变。实际上,由于前者在光盘的内边缘具有高熵含量,因此,震动积聚解决方案的生存能力似乎更为通用。由于电击压缩,后震后流量(等效的后电晕,以后的PSC)变热又致密,因此,在通过反激流通过逆综合化的前震源重新处理软光子后,可以产生高能量辐射。通常,PSC的特征是冲击属性,即冲击位置($ r_s $),压缩比($ r $)和冲击强度($ s $),我们研究了它们对能量($ {\ cal e} $)的依赖性($ {\ cal e} $)和流动性流量参数以及黑洞参数的依赖性。我们在$λ-{\ cal e} $平面中识别参数空间的有效域,以进行冲击,并观察到,对于广泛的流参数,冲击仍会形成。我们还发现,$ a _ {\ rm k} $和$ n $在确定冲击属性和冲击参数空间方面具有反对作用。最后,考虑到免费排放,我们计算了圆盘发光度($ L $),并观察到与无冲击溶液相比,含有冲击的积聚流更加发光。
We present the global solutions of low angular momentum, inviscid, advective accretion flow around Kerr-Taub-NUT (KTN) black hole in presence and absence of shock waves. These solutions are obtained by solving the governing equations that describe the relativistic accretion flow in KTN spacetime which is characterized by the Kerr parameter ($a_{\rm k}$) and NUT parameter ($n$). During accretion, rotating flow experiences centrifugal barrier that eventually triggers the discontinuous shock transition provided the relativistic shock conditions are satisfied. In reality, the viability of shocked accretion solution appears more generic over the shock free solution as the former possesses high entropy content at the inner edge of the disc. Due to shock compression, the post-shock flow (equivalently post-shock corona, hereafter PSC) becomes hot and dense, and therefore, can produce high energy radiations after reprocessing the soft photons from the pre-shock flow via inverse Comptonization. In general, PSC is characterized by the shock properties, namely shock location ($r_s$), compression ratio ($R$) and shock strength ($S$), and we examine their dependencies on the energy (${\cal E}$) and angular momentum ($λ$) of the flow as well as black hole parameters. We identify the effective domain of the parameter space in $λ-{\cal E}$ plane for shock and observe that shock continues to form for wide range of flow parameters. We also find that $a_{\rm k}$ and $n$ act oppositely in determining the shock properties and shock parameter space. Finally, we calculate the disc luminosity ($L$) considering free-free emissions and observe that accretion flows containing shocks are more luminous compared to the shock free solutions.