论文标题

$ ϕ $和$ k^{*0} $ Mesons in Reme-ion Collisions的全球旋转对齐方式

Pattern of Global Spin Alignment of $ϕ$ and $K^{*0}$ mesons in Heavy-Ion Collisions

论文作者

STAR Collaboration, Abdallah, M. S., Aboona, B. E., Adam, J., Adamczyk, L., Adams, J. R., Adkins, J. K., Agakishiev, G., Aggarwal, I., Aggarwal, M. M., Ahammed, Z., Aitbaev, A., Alekseev, I., Anderson, D. M., Aparin, A., Aschenauer, E. C., Ashraf, M. U., Atetalla, F. G., Averichev, G. S., Bairathi, V., Baker, W., Cap, J. G. Ball, Barish, K., Behera, A., Bellwied, R., Bhagat, P., Bhasin, A., Bielcik, J., Bielcikova, J., Bordyuzhin, I. G., Brandenburg, J. D., Brandin, A. V., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Chakaberia, I., Chaloupka, P., Chan, B. K., Chang, F-H., Chang, Z., Chatterjee, A., Chattopadhyay, S., Chen, D., Chen, J., Chen, J. H., Chen, X., Chen, Z., Cheng, J., Choudhury, S., Christie, W., Chu, X., Crawford, H. J., Csanád, M., Daugherity, M., Dedovich, T. G., Deppner, I. M., Derevschikov, A. A., Dhamija, A., Di Carlo, L., Didenko, L., Dixit, P., Dong, X., Drachenberg, J. L., Duckworth, E., Dunlop, J. C., Engelage, J., Eppley, G., Esumi, S., Evdokimov, O., Ewigleben, A., Eyser, O., Fatemi, R., Fawzi, F. M., Fazio, S., Feng, C. J., Feng, Y., Finch, E., Fisyak, Y., Francisco, A., Fu, C., Gagliardi, C. A., Galatyuk, T., Geurts, F., Ghimire, N., Gibson, A., Gopal, K., Gou, X., Grosnick, D., Gupta, A., Guryn, W., Hamed, A., Han, Y., Harabasz, S., Harasty, M. D., Harris, J. W., Harrison, H., He, S., He, W., He, X. H., He, Y., Heppelmann, S., Herrmann, N., Hoffman, E., Holub, L., Hu, C., Hu, Q., Hu, Y., Huang, H., Huang, H. Z., Huang, S. L., Huang, T., Huang, X., Huang, Y., Humanic, T. J., Isenhower, D., Isshiki, M., Jacobs, W. W., Jena, C., Jentsch, A., Ji, Y., Jia, J., Jiang, K., Ju, X., Judd, E. G., Kabana, S., Kabir, M. L., Kagamaster, S., Kalinkin, D., Kang, K., Kapukchyan, D., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kelsey, M., Kikoła, D. P., Kimelman, B., Kincses, D., Kisel, I., Kiselev, A., Knospe, A. G., Ko, H. S., Kochenda, L., Korobitsin, A., Kosarzewski, L. K., Kramarik, L., Kravtsov, P., Kumar, L., Kumar, S., Elayavalli, R. Kunnawalkam, Kwasizur, J. H., Lacey, R., Lan, S., Landgraf, J. M., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leung, Y. H., Lewis, N., Li, C., Li, C., Li, W., Li, X., Li, Y., Liang, X., Liang, Y., Licenik, R., Lin, T., Lin, Y., Lisa, M. A., Liu, F., Liu, H., Liu, H., Liu, P., Liu, T., Liu, X., Liu, Y., Liu, Z., Ljubicic, T., Llope, W. J., Longacre, R. S., Loyd, E., Lu, T., Lukow, N. S., Luo, X. F., Ma, L., Ma, R., Ma, Y. G., Magdy, N., Mallick, D., Manukhov, S. L., Margetis, S., Markert, C., Matis, H. S., Mazer, J. A., Minaev, N. G., Mioduszewski, S., Mohanty, B., Mondal, M. M., Mooney, I., Morozov, D. A., Mukherjee, A., Nagy, M., Nam, J. D., Nasim, Md., Nayak, K., Neff, D., Nelson, J. M., Nemes, D. B., Nie, M., Nigmatkulov, G., Niida, T., Nishitani, R., Nogach, L. V., Nonaka, T., Nunes, A. S., Odyniec, G., Ogawa, A., Oh, S., Okorokov, V. A., Okubo, K., Page, B. S., Pak, R., Pan, J., Pandav, A., Pandey, A. K., Panebratsev, Y., Parfenov, P., Paul, A., Pawlik, B., Pawlowska, D., Perkins, C., Pluta, J., Pokhrel, B. R., Porter, J., Posik, M., Prozorova, V., Pruthi, N. K., Przybycien, M., Putschke, J., Qiu, H., Quintero, A., Racz, C., Radhakrishnan, S. K., Raha, N., Ray, R. L., Reed, R., Ritter, H. G., Robotkova, M., Romero, J. L., Roy, D., Ruan, L., Sahoo, A. K., Sahoo, N. R., Sako, H., Salur, S., Samigullin, E., Sandweiss, J., Sato, S., Schmidke, W. B., Schmitz, N., Schweid, B. R., Seck, F., Seger, J., Seto, R., Seyboth, P., Shah, N., Shahaliev, E., Shanmuganathan, P. V., Shao, M., Shao, T., Sharma, R., Sheikh, A. I., Shen, D. Y., Shi, S. S., Shi, Y., Shou, Q. Y., Sichtermann, E. P., Sikora, R., Singh, J., Singha, S., Sinha, P., Skoby, M. J., Smirnov, N., Söhngen, Y., Solyst, W., Song, Y., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Stefaniak, M., Stewart, D. J., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Sumbera, M., Sun, X. M., Sun, X., Sun, Y., Sun, Y., Surrow, B., Svirida, D. N., Sweger, Z. W., Szymanski, P., Tang, A. H., Tang, Z., Taranenko, A., Tarnowsky, T., Thomas, J. H., Timmins, A. R., Tlusty, D., Todoroki, T., Tokarev, M., Tomkiel, C. A., Trentalange, S., Tribble, R. E., Tribedy, P., Tripathy, S. K., Truhlar, T., Trzeciak, B. A., Tsai, O. D., Tu, Z., Ullrich, T., Underwood, D. G., Upsal, I., Van Buren, G., Vanek, J., Vasiliev, A. N., Vassiliev, I., Verkest, V., Videbæk, F., Vokal, S., Voloshin, S. A., Wang, F., Wang, G., Wang, J. S., Wang, P., Wang, X., Wang, Y., Wang, Y., Wang, Z., Webb, J. C., Weidenkaff, P. C., Westfall, G. D., Wieman, H., Wissink, S. W., Witt, R., Wu, J., Wu, J., Wu, Y., Xi, B., Xiao, Z. G., Xie, G., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, Y., Xu, Z., Xu, Z., Yan, G., Yang, C., Yang, Q., Yang, S., Yang, Y., Ye, Z., Ye, Z., Yi, L., Yip, K., Yu, Y., Zbroszczyk, H., Zha, W., Zhang, C., Zhang, D., Zhang, J., Zhang, S., Zhang, S., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Z. J., Zhang, Z., Zhang, Z., Zhao, F., Zhao, J., Zhao, M., Zhou, C., Zhou, Y., Zhu, X., Zurek, M., Zyzak, M.

论文摘要

自从Yukawa首先在梅森交流方面对核子之间的力量进行描述以来,尽管有数十年的进步,但对强烈互动的充分理解仍然是现代科学的主要挑战。剩下的困难来自强力的非扰动性质,这导致在质子大小的范围内导致夸克限制的现象。在这里,我们表明,在相对论的重型离子碰撞中,夸克和胶子在延长的体积上释放,两种生产的矢量(Spin-1)介子,即$ ϕ $和$ ϕ $和$ k^{*0} $,以惊人的全球旋转统一模式出现。特别是,$ ϕ $的全局旋转对齐意外大,而对于$ k^{*0} $,它与零一致。 $ ϕ $的观察到的自旋分组模式和幅度不能用常规机制来解释,而与强力场有联系的模型,即标准模型和量子染色体动力学中的有效代理描述可容纳当前数据。该联系(如果完全建立)将为研究强力场的行为开辟一个潜在的新途径。

Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $ϕ$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $ϕ$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $ϕ$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源