论文标题

J.W.问题的答案加农炮和S.G.

An answer to a question of J.W. Cannon and S.G. Wayment

论文作者

Frolkina, Olga

论文摘要

解决R.J. Daverman的问题,V。Krushkal描述了$ \ Mathbb r^n $ in $ n \ geqslant 4 $;这些组不能被小型环境同位素脱离自身。使用Krushkal套装,我们回答了J.W.的问题Cannon and S.G. Wayment(1970)。也就是说,对于$ n \ geqslant 4 $,我们构建compacta $ x \ subset \ mathbb r^n $具有以下两个属性:某些序列$ \ {x_i \ subset \ subset \ mathbb r^n \ setminus x,in \ setminus x,\ in \ mathb n \ n iss $ x $ x $ x $ x $ x $ x $ x集合$y_α\ subset \ mathbb r^n $每个嵌入到$ x $上。

Solving R.J. Daverman's problem, V. Krushkal described sticky Cantor sets in $\mathbb R^N$ for $N\geqslant 4$; these sets cannot be isotoped off of itself by small ambient isotopies. Using Krushkal sets, we answer a question of J.W. Cannon and S.G. Wayment (1970). Namely, for $N\geqslant 4$ we construct compacta $X\subset \mathbb R^N$ with the following two properties: some sequence $\{ X_i \subset \mathbb R^N \setminus X, \ i\in\mathbb N \}$ converges homeomorphically to $X$, but there is no uncountable family of pairwise disjoint sets $Y_α\subset \mathbb R^N$ each of which is embedded equivalently to $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源