论文标题

香蕉亚家族分类和使用计算机视觉的质量预测

Banana Sub-Family Classification and Quality Prediction using Computer Vision

论文作者

Darapaneni, Narayana, Tanndalam, Arjun, Gupta, Mohit, Taneja, Neeta, Purushothaman, Prabu, Eswar, Swati, Paduri, Anwesh Reddy, Arichandrapandian, Thangaselvi

论文摘要

印度是世界上第二大水果和蔬菜的生产商,也是通过Bigbasket,Grofers和Amazon Fresh等零售和电子商务巨头(如Bigbasket和Amazon Fresh)等零售和电子商务巨头(例如香蕉,木瓜和芒果)的最大消费者之一。但是,供应链和零售商店中技术的采用仍然很低,并且有很大的潜力采用基于计算机的技术来识别和分类水果。我们选择了香蕉水果来建立一个基于计算机视觉的模型来执行以下三个用例(a)从给定图像中识别香蕉(b)确定亚家族或各种香蕉(c)确定香蕉的质量。使用计算机视觉模型成功执行这些用例将极大地帮助整体库存管理自动化,质量控制,快速有效的称重和计费,这都是当前的手动劳动密集型。在这项工作中,我们建议一条机器学习管道,结合了CNN的想法,转移学习和数据增强,以改善香蕉水果子家庭和优质图像分类。我们已经建立了一个基本的CNN,然后通过使用3064张图像的自我策划和公共可用数据集的组合来调整Mobilenet香蕉分类模型。结果显示,亚家庭/品种的总体准确性和100%的精度和质量测试分类。

India is the second largest producer of fruits and vegetables in the world, and one of the largest consumers of fruits like Banana, Papaya and Mangoes through retail and ecommerce giants like BigBasket, Grofers and Amazon Fresh. However, adoption of technology in supply chain and retail stores is still low and there is a great potential to adopt computer-vision based technology for identification and classification of fruits. We have chosen banana fruit to build a computer vision based model to carry out the following three use-cases (a) Identify Banana from a given image (b) Determine sub-family or variety of Banana (c) Determine the quality of Banana. Successful execution of these use-cases using computer-vision model would greatly help with overall inventory management automation, quality control, quick and efficient weighing and billing which all are manual labor intensive currently. In this work, we suggest a machine learning pipeline that combines the ideas of CNNs, transfer learning, and data augmentation towards improving Banana fruit sub family and quality image classification. We have built a basic CNN and then went on to tune a MobileNet Banana classification model using a combination of self-curated and publicly-available dataset of 3064 images. The results show an overall 93.4% and 100% accuracy for sub-family/variety and for quality test classifications respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源