论文标题
没有“ weil-”的辅助理论,具有算术曲线的真实系数
There is no "Weil-"cohomology theory with real coefficients for arithmetic curves
论文作者
论文摘要
Serre的一个众所周知的论点表明,没有Weil的共同体学理论,具有真正系数,用于$ \ bar {\ Mathbb {f}} _ P $平滑的投射品种。在本说明中,我们解释了为什么在规格$ \ mathbb {z} $上,对于算术方案而言,即使对于数字环的光谱,算术方案都无法使用真实系数的“ weil-”同胞理论。
A well known argument by Serre shows that there is no Weil cohomology theory with real coefficients for smooth projective varieties over $\bar{\mathbb{F}}_p$. In this note we explain why no "Weil-"cohomology theory with real coefficients can exist for arithmetic schemes over spec $\mathbb{Z}$, even for spectra of number rings.