论文标题
原始双二估计器学习:具有可行性和近乎急速保证的离线约束移动范围估计方法
Primal-dual Estimator Learning: an Offline Constrained Moving Horizon Estimation Method with Feasibility and Near-optimality Guarantees
论文作者
论文摘要
本文提出了一个原始的二重式框架,以了解利用移动视野方法的线性约束估计问题的稳定估计器。为了避免在大多数现有方法中的在线计算负担,我们离线学习了一个参数化功能,以近似于原始估计。同时,对双重估计器进行了训练,以检查执行时间内原始估计器的次优。使用有监督的学习技术从数据中学到了原始估计器和双重估计器,并提供了明确的样本量,这使我们能够在可行性和最佳性方面保证每个学习的估计器的质量。反过来,这使我们能够束缚学习估计器不可行或次优的概率。此外,我们分析了所得估计量的稳定性,并在成本函数的最小化中有界限。由于我们的算法在运行时不需要解决优化问题的解决方案,因此几乎可以立即在线生成状态估计。给出了模拟结果,以显示与移动视野估计和卡尔曼滤波器的在线优化相比,提出的框架的准确性和时间效率。据我们所知,这是第一个基于学习的状态估计器,可为线性约束系统提供可行性和近距离保证。
This paper proposes a primal-dual framework to learn a stable estimator for linear constrained estimation problems leveraging the moving horizon approach. To avoid the online computational burden in most existing methods, we learn a parameterized function offline to approximate the primal estimate. Meanwhile, a dual estimator is trained to check the suboptimality of the primal estimator during execution time. Both the primal and dual estimators are learned from data using supervised learning techniques, and the explicit sample size is provided, which enables us to guarantee the quality of each learned estimator in terms of feasibility and optimality. This in turn allows us to bound the probability of the learned estimator being infeasible or suboptimal. Furthermore, we analyze the stability of the resulting estimator with a bounded error in the minimization of the cost function. Since our algorithm does not require the solution of an optimization problem during runtime, state estimates can be generated online almost instantly. Simulation results are presented to show the accuracy and time efficiency of the proposed framework compared to online optimization of moving horizon estimation and Kalman filter. To the best of our knowledge, this is the first learning-based state estimator with feasibility and near-optimality guarantees for linear constrained systems.