论文标题

使用几何空间曲线设计全球最佳纠缠大门

Designing globally optimal entangling gates using geometric space curves

论文作者

Tang, Ho Lun, Connelly, Kyle, Warren, Ada, Zhuang, Fei, Economou, Sophia E., Barnes, Edwin

论文摘要

高保真纠缠的门对于量子计算至关重要。当前,设计此类门的大多数方法都是基于简单的,分析性的脉冲波形或从数值优化技术获得的方法。在这两种情况下,通常都无法获得对产生目标门操作的波形空间的全球理解,从而使设计全球最佳门具有挑战性。在这里,我们表明,对于弱耦合量子的情况,可以找到实现目标纠缠门的所有脉冲。我们通过将量子进化映射到几何空间曲线中来做到这一点。我们得出这些曲线必须满足的最小条件,以确保实施具有所需的纠缠力的门。脉冲波形是从这些曲线的曲线中提取的。我们通过设计快速的,cnot等效的纠缠大门来说明我们的方法,用于硅量子点旋转量子量超过99%。我们表明,通过使用几何派生的脉冲作为数值优化例程中的初始猜测,可以进一步提高忠诚度,同时保持低带宽要求。

High-fidelity entangling gates are essential for quantum computation. Currently, most approaches to designing such gates are based either on simple, analytical pulse waveforms or on ones obtained from numerical optimization techniques. In both cases, it is typically not possible to obtain a global understanding of the space of waveforms that generate a target gate operation, making it challenging to design globally optimal gates. Here, we show that in the case of weakly coupled qubits, it is possible to find all pulses that implement a target entangling gate. We do this by mapping quantum evolution onto geometric space curves. We derive the minimal conditions these curves must satisfy in order to guarantee a gate with a desired entangling power is implemented. Pulse waveforms are extracted from the curvatures of these curves. We illustrate our method by designing fast, CNOT-equivalent entangling gates for silicon quantum dot spin qubits with fidelities exceeding 99%. We show that fidelities can be further improved while maintaining low bandwidth requirements by using geometrically derived pulses as initial guesses in numerical optimization routines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源