论文标题
部分可观测时空混沌系统的无模型预测
Energizing Star Formation: The Cosmic Ray Ionization Rate in NGC 253 Derived From ALCHEMI Measurements of H$_3$O$^+$ and SO
论文作者
论文摘要
宇宙射线电离速率(CRIR)是了解星际介质中物理和化学过程的关键参数。宇宙射线是恒星形成区域中的重要能源,这会影响驱动恒星形成的物理和化学过程。先前对Starburst Galaxy NGC 253的周环区(CMZ)的研究发现了高CRIR值的证据。 $ 10^3-10^6 $倍于银河系内的平均宇宙射线电离速率。这是一个广泛的限制,本研究的一个目标是以更高的精度来确定该值。我们利用ALMA观察到NGC 253的中央分子区域来测量CRIR。我们首先证明H $ _3 $ o $^+$的丰度比对CRIR非常敏感。然后,我们将化学和辐射转移模型与嵌套采样相结合,以推断NGC 253中几个恒星形成区域的气体特性和CRIR,这是由于其过渡的发射。我们发现,建模的四个区域中的每个区域中的每个区域都在$(1-80)\ times10^{ - 14} $ s $ s $^{ - 1} $的范围内,并且此结果非常适合其他物种,这些物种被认为对包括C $ _2 $ _2 $ _2 $ H,HCO $^+$ $ $^$ $ $ $的cosmic rays既不敏感的cosmic rays都不敏感。紫外线/X射线驱动或冲击主导的化学是一种可行的单一选择,因为这些过程都无法充分适合所有这些物种的丰富性。
The cosmic ray ionization rate (CRIR) is a key parameter in understanding the physical and chemical processes in the interstellar medium. Cosmic rays are a significant source of energy in star formation regions, which impacts the physical and chemical processes which drive the formation of stars. Previous studies of the circum-molecular zone (CMZ) of the starburst galaxy NGC 253 have found evidence for a high CRIR value; $10^3-10^6$ times the average cosmic ray ionization rate within the Milky Way. This is a broad constraint and one goal of this study is to determine this value with much higher precision. We exploit ALMA observations towards the central molecular zone of NGC 253 to measure the CRIR. We first demonstrate that the abundance ratio of H$_3$O$^+$ and SO is strongly sensitive to the CRIR. We then combine chemical and radiative transfer models with nested sampling to infer the gas properties and CRIR of several star-forming regions in NGC 253 due to emission from their transitions. We find that each of the four regions modelled has a CRIR in the range $(1-80)\times10^{-14}$ s$^{-1}$ and that this result adequately fits the abundances of other species that are believed to be sensitive to cosmic rays including C$_2$H, HCO$^+$, HOC$^+$, and CO. From shock and PDR/XDR models, we further find that neither UV/X-ray driven nor shock dominated chemistry are a viable single alternative as none of these processes can adequately fit the abundances of all of these species.