论文标题
多模式的多头卷积注意,具有各种内核大小的医疗图像超分辨率
Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes for Medical Image Super-Resolution
论文作者
论文摘要
超解决的医学图像可以帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描(CT)或磁共振成像(MRI)技术在一次研究过程中捕获了几次扫描(模式),可以共同使用(以多模式的方式使用),以进一步提高超分辨率结果的质量。为此,我们提出了一种新型的多模式多模式卷积注意模块,以进行超溶解CT和MRI扫描。我们的注意力模块使用卷积操作对多个串联输入张量进行关节空间通道的关注,其中内核(接收场)尺寸控制空间注意力的降低速率,而卷积过滤器的数量分别控制着通道注意的降低速率。我们引入了多个注意力头,每个头部都具有与空间注意的特定降低率相对应的独特接收场大小。我们将多模式的多头卷积注意(MMHCA)整合到两个深层神经体系结构中,以进行超分辨率,并在三个数据集上进行实验。我们的经验结果表明,我们的注意模块比超分辨率中使用的最新注意力机制的优越性。此外,我们进行了一项消融研究,以评估我们注意模块中涉及的组件的影响,例如输入数量或头部数量。我们的代码可在https://github.com/lilygeorgescu/mhca免费获得。
Super-resolving medical images can help physicians in providing more accurate diagnostics. In many situations, computed tomography (CT) or magnetic resonance imaging (MRI) techniques capture several scans (modes) during a single investigation, which can jointly be used (in a multimodal fashion) to further boost the quality of super-resolution results. To this end, we propose a novel multimodal multi-head convolutional attention module to super-resolve CT and MRI scans. Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple concatenated input tensors, where the kernel (receptive field) size controls the reduction rate of the spatial attention, and the number of convolutional filters controls the reduction rate of the channel attention, respectively. We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention. We integrate our multimodal multi-head convolutional attention (MMHCA) into two deep neural architectures for super-resolution and conduct experiments on three data sets. Our empirical results show the superiority of our attention module over the state-of-the-art attention mechanisms used in super-resolution. Moreover, we conduct an ablation study to assess the impact of the components involved in our attention module, e.g. the number of inputs or the number of heads. Our code is freely available at https://github.com/lilygeorgescu/MHCA.