论文标题

Cantor集的翻译中的理性点

Rational Points in Translations of The Cantor Set

论文作者

Jiang, Kan, Kong, Derong, Li, Wenxia, Wang, Zhiqiang

论文摘要

给定两个副本整数$ p \ ge 2 $和$ q \ ge 3 $,让$ d_p \ subset [0,1)$由所有具有有限$ p $ p $ - ary扩展的理性数字组成,然后$ $ k(q,\ nathcal {a} a} \ frac {d_i} {q^i}:d_i \ in \ mathcal {a}〜\ forall i \ in \ mathbb {n} \ bigG \},$ \ mathcal {a a} a} a} $ 1 <\#\ Mathcal {a} <q $。在2021年,schleischitz表明$ \#(d_p \ cap k(q,\ mathcal {a})))<+\ \ infty $。在本文中,我们表明,对于任何$ r \ in \ mathbb {q} $,对于任何$α\ in \ mathbb {r} $,$$ \#\ big(((r d_p+α)\ cap k(q,mathcal {a}) $$

Given two coprime integers $p\ge 2$ and $q \ge 3$, let $D_p\subset[0,1)$ consist of all rational numbers which have a finite $p$-ary expansion, and let $$ K(q, \mathcal{A})=\bigg\{ \sum_{i=1}^\infty \frac{d_i}{q^i}: d_i\in \mathcal{A}~ \forall i\in\mathbb{N} \bigg\}, $$ where $\mathcal{A} \subset \{0,1,\ldots, q-1\}$ with cardinality $1<\#\mathcal{A}< q$. In 2021 Schleischitz showed that $\#(D_p\cap K(q,\mathcal{A}))<+\infty$. In this paper we show that for any $r\in\mathbb{Q}$ and for any $α\in\mathbb{R}$, $$ \#\big((r D_p+α)\cap K(q,\mathcal{A})\big)<+\infty. $$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源