论文标题

在扰动下的Rockafellian松弛和随机优化

Rockafellian Relaxation and Stochastic Optimization under Perturbations

论文作者

Royset, Johannes O., Chen, Louis L., Eckstrand, Eric

论文摘要

实际上,由于可疑的假设和损坏的数据,优化模型通常容易出现不可避免的不准确性。传统上,这特别强调了基于风险和强大的配方,并关注``保守''决策。相反,我们发展了一个基于````乐观''''框架,基于````乐观''''框架,基于洛克菲利放松身心,其中优化不仅在原始决策领域进行,而且还与模型互动的选择共同进行。该框架使我们能够从两阶段随机优化领域的含糊概率分布中解决具有挑战性的问题,而无需相对完整的追索权,缺乏连续性属性,期望约束和离群分析的概率函数。我们还能够规避随机优化的基本困难,即分布的融合无法保证期望的收敛性。该框架以精确和极限的洛克菲尔人的新颖概念为中心,并在某些情况下对``负面''正则化的解释进行了解释。我们说明了Phi-Divergence的作用,检查不断变化的分布情况下的收敛速率,并探索对一阶最佳条件的扩展。主要的发展是没有关于目标功能的凸,光滑甚至连续性的假设。在设置具有标签噪声的计算机视觉和文本分析的数字结果中说明了框架。

In practice, optimization models are often prone to unavoidable inaccuracies due to dubious assumptions and corrupted data. Traditionally, this placed special emphasis on risk-based and robust formulations, and their focus on ``conservative" decisions. We develop, in contrast, an ``optimistic" framework based on Rockafellian relaxations in which optimization is conducted not only over the original decision space but also jointly with a choice of model perturbation. The framework enables us to address challenging problems with ambiguous probability distributions from the areas of two-stage stochastic optimization without relatively complete recourse, probability functions lacking continuity properties, expectation constraints, and outlier analysis. We are also able to circumvent the fundamental difficulty in stochastic optimization that convergence of distributions fails to guarantee convergence of expectations. The framework centers on the novel concepts of exact and limit-exact Rockafellians, with interpretations of ``negative'' regularization emerging in certain settings. We illustrate the role of Phi-divergence, examine rates of convergence under changing distributions, and explore extensions to first-order optimality conditions. The main development is free of assumptions about convexity, smoothness, and even continuity of objective functions. Numerical results in the setting of computer vision and text analytics with label noise illustrate the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源