论文标题
用于复杂函数的Schur多个Zeta值的广义二元公式的插值
An interpolation of the generalized duality formula for the Schur multiple zeta values to complex functions
论文作者
论文摘要
多个Zeta功能研究的重要研究主题之一是阐明它们之间的线性关系和功能方程。 Schur多个Zeta函数是Euler-Zagier类型的多个Zeta函数的概括。在许多关系中,二元公式及其概括是Euler-Zagier类型和Schur类型多重Zeta值的重要家族。在本文中,遵循以前的欧拉 - Zagier类型的多个Zeta值的方法,我们在广义二元公式中对总和的插值(称为ohno关系),用于Schur多个Zeta值。此外,我们证明了Schur多个Zeta值的OHNO关系对于复数有效。
One of the important research subjects in the study of multiple zeta functions is to clarify the linear relations and functional equations among them. The Schur multiple zeta functions are a generalization of the multiple zeta functions of Euler-Zagier type. Among many relations, the duality formula and its generalization are important families for both Euler-Zagier type and Schur type multiple zeta values. In this paper, following the method of previous works for multiple zeta values of Euler-Zagier type, we give an interpolation of the sums in the generalized duality formula, called Ohno relation, for Schur multiple zeta values. Moreover, we prove that the Ohno relation for Schur multiple zeta values is valid for complex numbers.