论文标题
在拓扑递归中生成两分图的不规则光谱曲线
An irregular spectral curve for the generation of bipartite maps in topological recursion
论文作者
论文摘要
我们得出了一种有效的方法,以使用光谱曲线作为拓扑递归框架的初始数据来获得任意属和边界长度的两分图的生成函数。基于Chapuy和Fang计数这些地图并具有与拓扑递归的结构接近的早期结果,我们推断出相应的光谱曲线,该光谱曲线与光谱曲线具有很强的关系,从而产生了普通图的产生功能。与普通地图相反,在Do和Norbury的意义上,光谱曲线是一种不规则的曲线。它概括了不规则的曲线,以列举Grothendieck的Dessins d'Enfant。
We derive an efficient way to obtain generating functions of bipartite maps of arbitrary genus and boundary length using a spectral curve as initial data for the framework of topological recursion. Based on an earlier result of Chapuy and Fang counting these maps and having a structural proximity to topological recursion, we deduce the corresponding spectral curve which has a strong relation to the spectral curve giving rise to generating functions of ordinary maps. In contrast to ordinary maps, the spectral curve is an irregular one in the sense of Do and Norbury. It generalises the irregular curve for the enumeration of Grothendieck's dessins d'enfant.