论文标题
旋转流体和原始系统的渐近学,在临界空间中具有大量不准备的初始数据
Asymptotics for the rotating fluids and primitive systems with large ill-prepared initial data in critical spaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this article we study the lifespan and asymptotics (in the large rotation and stratification regime) for the Primitive system for highly ill-prepared initial data in critical spaces. Compared to our previous works, we simplified the proof and made it adaptable to the Rotating fluids system with highly ill-prepared initial data decomposed as a sum of 2D horizontal part and a very large 3D part. We also provide explicit convergence rates.