论文标题
跨国散射幅度中的CWEB的构建块
Building blocks of Cwebs in multiparton scattering amplitudes
论文作者
论文摘要
已知威尔逊 - 线运算符在非亚伯仪理论中的相关器已知,并且可以根据称为CWEB的Feynman图的集合来组织它们的对数。对数中出现的颜色因子对应于完全连接的图,并由网络混合矩阵确定。在本文中,我们介绍了几个新概念:(a)CWEB图表的正常顺序,(b)Fused-webs(c)CWEB的基础和家族。我们将这些想法与独特定理一起使用,我们证明是对对角线块的理解,以及混合矩阵中出现的几个无效矩阵。我们证明了使用形式主义表明,一旦确定$α_{s}^{n} $的基础CWEB,可以预测,可以预测,可以预测,可以预测,几类CWEB的指示色因子的数量可以预测。我们进一步为混合矩阵,扰动理论中的所有订单,使用我们的框架提供了两种特殊类别的CWEB。
The correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of the collections of Feynman diagrams called Cwebs. The colour factors that appear in the logarithm correspond to completely connected diagrams and are determined by the web mixing matrices. In this article we introduce several new concepts: (a) Normal ordering of the diagrams of a Cweb, (b) Fused-Webs (c) Basis and Family of Cwebs. We use these ideas together with a Uniqueness theorem that we prove to arrive at an understanding of the diagonal blocks, and several null matrices that appear in the mixing matrices. We demonstrate using our formalism that, once the basis Cwebs present upto order $α_{s}^{n}$ are determined, the number of exponentiated colour factors for several classes of Cwebs starting at order $α_{s}^{n+1}$ can be predicted. We further provide complete results for the mixing matrices, to all orders in perturbation theory, for two special classes of Cwebs using our framework.