论文标题
部分可观测时空混沌系统的无模型预测
Gradient estimates for the insulated conductivity problem: the case of $m$-convex inclusions
论文作者
论文摘要
我们考虑了一个绝缘电导率模型,其中两个相邻的夹杂物为$ \ mathbb {r}^{d} $,当时$ \ mathbb {r}^{d} $当$ m \ geq2 $和$ d \ geq3 $时。我们在$β= [ - (D+M-3)+\ sqrt {(D+M-3)^{(d+m-3)^{2} +4(d-2)+4(d-2)+4(d-2)+4(d-d-2)+4(d-d-2)}+4(d-d-2)+4(d-d-2)+4(d-2)+4(d-d-}+4(d-2)+4(d-d-d-2)} $(MOS)(MOS)(Mor)(MOR)(D+M-3)^{2} +4(D-2)+4(d-d-2)}+4(d-D-2)} $(Mor)(MOR)(MOR)这两个绝缘子之间的$ \ varepsilon $趋于零。特别是,对于一类轴对称$ M $ -CONVEX夹杂物的爆炸率的最优性也证明了。
We consider an insulated conductivity model with two neighboring inclusions of $m$-convex shapes in $\mathbb{R}^{d}$ when $m\geq2$ and $d\geq3$. We establish the pointwise gradient estimates for the insulated conductivity problem and capture the gradient blow-up rate of order $\varepsilon^{-1/m+β}$ with $β=[-(d+m-3)+\sqrt{(d+m-3)^{2}+4(d-2)}]/(2m)\in(0,1/m)$, as the distance $\varepsilon$ between these two insulators tends to zero. In particular, the optimality of the blow-up rate is also demonstrated for a class of axisymmetric $m$-convex inclusions.