论文标题
查找mnemon:恢复节点嵌入的记忆
Finding MNEMON: Reviving Memories of Node Embeddings
论文作者
论文摘要
以前的安全研究工作围绕图形绕过,专门针对(DE-)匿名图形或了解图神经网络的安全性和隐私问题。很少有人注意了解与复杂的下游机器学习管道中图形嵌入模型(例如节点嵌入)的输出的隐私风险。在本文中,我们填补了这一空白,并提出了一种新型的模型无形图恢复攻击,该攻击利用了保留在图节点嵌入中的隐式图结构信息。我们表明,对手只能通过访问原始图的节点嵌入矩阵而无需与节点嵌入模型进行交互,从而可以以良好的精度恢复边缘。我们通过广泛的实验证明了图形恢复攻击的有效性和适用性。
Previous security research efforts orbiting around graphs have been exclusively focusing on either (de-)anonymizing the graphs or understanding the security and privacy issues of graph neural networks. Little attention has been paid to understand the privacy risks of integrating the output from graph embedding models (e.g., node embeddings) with complex downstream machine learning pipelines. In this paper, we fill this gap and propose a novel model-agnostic graph recovery attack that exploits the implicit graph structural information preserved in the embeddings of graph nodes. We show that an adversary can recover edges with decent accuracy by only gaining access to the node embedding matrix of the original graph without interactions with the node embedding models. We demonstrate the effectiveness and applicability of our graph recovery attack through extensive experiments.