论文标题
部分可观测时空混沌系统的无模型预测
Celestial insights into the S-matrix bootstrap
论文作者
论文摘要
我们考虑在天体变量中的四个时空维度中散射2-2。使用交叉对称分散关系(CSDR),我们根据交叉对称部分波重铸造天体振幅。这些部分波在复杂的天体变量中具有虚假的奇异性,需要在局部理论中去除。局部约束(无限制)接收封闭形式的表达式,这导致了部分波浪矩的新界限。这些边界使我们能够量化标量理论的低自旋优势(LSD)的程度。我们研究了一种新的积极性,似乎存在于广泛的理论中。我们证明,这种阳性仅在具有自旋0主导性的理论中产生。从几何函数理论(GFT)的意义上讲,切除具有虚假奇异性的交叉对称部分波在天体变量中具有显着的特性,即通常是现实。使用GFT技术,我们根据部分波矩的威尔逊系数得出了非标志性边界。
We consider 2-2 scattering in four spacetime dimensions in Celestial variables. Using the crossing symmetric dispersion relation (CSDR), we recast the Celestial amplitudes in terms of crossing symmetric partial waves. These partial waves have spurious singularities in the complex Celestial variable, which need to be removed in local theories. The locality constraints (null constraints) admit closed form expressions, which lead to novel bounds on partial wave moments. These bounds allow us to quantify the degree of low spin dominance(LSD) for scalar theories. We study a new kind of positivity that seems to be present in a wide class of theories. We prove that this positivity arises only in theories with a spin-0 dominance. The crossing symmetric partial waves with spurious singularities removed, dubbed as Feynman blocks, have remarkable properties in the Celestial variable, namely typically realness, in the sense of Geometric Function Theory (GFT). Using GFT techniques we derive non-projective bounds on Wilson coefficients in terms of partial wave moments.