论文标题

使用增强学习优化张量网络收缩

Optimizing Tensor Network Contraction Using Reinforcement Learning

论文作者

Meirom, Eli A., Maron, Haggai, Mannor, Shie, Chechik, Gal

论文摘要

量子计算(QC)彻底改变了计算,但目前仍然有限。为了开发和测试量子算法,通常在古典计算机上模拟量子电路。模拟复杂的量子电路需要计算大型张量网络的收缩。收缩的顺序(路径)可能会对计算成本产生巨大影响,但是找到有效的顺序是一个具有挑战性的组合优化问题。 我们提出了一种加强学习(RL)方法与图形神经网络(GNN)相结合,以解决收缩排序问题。由于巨大的搜索空间,重尾奖励分配以及具有挑战性的信贷分配,问题极具挑战性。我们展示了使用GNN作为基本政策结构的精心实施的RL-Antent如何解决这些挑战,并在三种电路中的最先进技术方面获得了重大改进,包括当代QC中使用的最大规模网络。

Quantum Computing (QC) stands to revolutionize computing, but is currently still limited. To develop and test quantum algorithms today, quantum circuits are often simulated on classical computers. Simulating a complex quantum circuit requires computing the contraction of a large network of tensors. The order (path) of contraction can have a drastic effect on the computing cost, but finding an efficient order is a challenging combinatorial optimization problem. We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem. The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment. We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges and obtain significant improvements over state-of-the-art techniques in three varieties of circuits, including the largest scale networks used in contemporary QC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源