论文标题
以用户为中心的对话推荐与多相关用户建模
User-Centric Conversational Recommendation with Multi-Aspect User Modeling
论文作者
论文摘要
会话推荐系统(CRS)旨在在对话中提供高质量的建议。但是,大多数传统的CRS模型主要集中于对当前会议的对话理解,而忽略了建议中心主题(即用户)的其他丰富的多种多样信息。在这项工作中,我们强调说,除了CRS中的当前对话会话外,用户的历史对话会话和外观用户是用户偏好的重要来源。为了系统地对多方面的信息进行建模,我们提出了一个以用户为中心的对话建议(UCCR)模型,该模型返回到CRS任务中用户偏好学习的本质。具体来说,我们建议一个历史课程学习者,以从知识,语义和消费视图中捕获用户的多视图偏好,作为当前偏好信号的补充。进行了多视图偏好映射器,以通过自我监督的目标学习当前和历史会议中不同观点之间的固有相关性。我们还设计了一个类似的外观用户选择器,以通过其相似用户来了解用户。然后将学习的多视图用户偏好用于推荐和对话生成。在实验中,我们对中文和英语CRS数据集进行了全面的评估。在推荐和对话生成中,对竞争模型的重大改进验证了UCCR的优势。
Conversational recommender systems (CRS) aim to provide highquality recommendations in conversations. However, most conventional CRS models mainly focus on the dialogue understanding of the current session, ignoring other rich multi-aspect information of the central subjects (i.e., users) in recommendation. In this work, we highlight that the user's historical dialogue sessions and look-alike users are essential sources of user preferences besides the current dialogue session in CRS. To systematically model the multi-aspect information, we propose a User-Centric Conversational Recommendation (UCCR) model, which returns to the essence of user preference learning in CRS tasks. Specifically, we propose a historical session learner to capture users' multi-view preferences from knowledge, semantic, and consuming views as supplements to the current preference signals. A multi-view preference mapper is conducted to learn the intrinsic correlations among different views in current and historical sessions via self-supervised objectives. We also design a temporal look-alike user selector to understand users via their similar users. The learned multi-aspect multi-view user preferences are then used for the recommendation and dialogue generation. In experiments, we conduct comprehensive evaluations on both Chinese and English CRS datasets. The significant improvements over competitive models in both recommendation and dialogue generation verify the superiority of UCCR.