论文标题
凯恩 - 梅勒模型中对磁性的拓扑贡献:明确的波函数方法
Topological contribution to magnetism in the Kane-Mele model: An explicit wave function approach
论文作者
论文摘要
在我们以前的出版物中[S. Ozaki和M. Ogata,物理。 Rev. Research 3,013058],在磁敏感性中的轨道 - 齐曼(OZ)跨学期的量化,或使用DIRAC点围绕的扩展显示了Kane-Mele模型。在本研究中,我们使用最近开发的配方准确地评估了Kane-Mele模型的轨道,自旋和OZ的跨学期。该公式是根据明确的Bloch波函数编写的,使我们能够评估每个贡献,考虑到整个Brillouin区域的集成以及所有频段的总和。结果,发现了其他贡献,例如核心电子diamagnetism。此外,我们的评估证实了OZ跨学期的量化,并揭示了其行为,包括金属案例。讨论了实验检测量化的可能性。
In our previous publication [S. Ozaki and M. Ogata, Phys. Rev. Research 3, 013058], the quantization of the orbital-Zeeman (OZ) cross term in the magnetic susceptibility, or the cross term of spin Zeeman and orbital effect, was shown for the Kane-Mele model using the expansion around the Dirac points. In the present study, we accurately evaluate the orbital, spin-Zeeman, and OZ cross term of the Kane-Mele model using a recently developed formulation. This formula is written in terms of the explicit Bloch wave functions, and enables us to evaluate each contribution taking account of the integration over the whole Brillouin zone and the summation over all the bands. As a result, additional contributions such as core-electron diamagnetism are found. Furthermore, our evaluation confirms the quantization of the OZ cross term and reveals its behavior including the metallic case. The possibility of experimental detection of the quantization is discussed.