论文标题
旋转供电无线电/$γ$ -Ray Pulsar PSR J1740+1000的热和非热X射线排放
Thermal and non-thermal X-ray emission from the rotation-powered radio/$γ$-ray pulsar PSR J1740+1000
论文作者
论文摘要
我们报告了新的XMM-Newton在2017 - 2018年进行的中年XMM-Newton观察结果($ \ sim $ 10 $^5 $ yr)PULSAR PSR PSR J1740+1000。这些长指标($ \ sim $ 530 ks)表明,非热发射,由具有光子索引$γ= 1.80 \ pm0.17 $的幂律频谱很好地描述,均以$ \ sim $ 30%$ 30%的脉冲脉冲分数脉冲。热排放可以与两个温度黑色的总和很好地拟合KPC)。我们没有发现吸收线的证据,因为该脉冲星在2006年进行的XMM-Newton观测值($ \ sim $ 67 ks)中观察到的那些证据。X射线热和非抗相分量在抗阶段中的峰值,并且没有一个与无线电脉冲相结合。再加上两个热成分的发射半径的较小差异,它消除了一种解释,其中磁层向后加速粒子加热了偶极极盖。与其他两个组件的总和很好地描述了与光谱的其他热发射隔离的中子星的比较表明,比率$ t_2 $/$ t_1 $和$ r_2 $/$ r_1 $对于不同类别的对象相似。观察到的值不能用简单的温度分布(例如由偶极场引起的)复制,表明存在更复杂的热图。
We report the results of new XMM-Newton observations of the middle-aged ($\sim$10$^5$ yr) radio pulsar PSR J1740+1000 carried out in 2017-2018. These long pointings ($\sim$530 ks) show that the non-thermal emission, well described by a power-law spectrum with photon index $Γ=1.80\pm0.17$, is pulsed with a $\sim$30% pulsed fraction above 2 keV. The thermal emission can be well fit with the sum of two blackbodies of temperatures $kT_1=70\pm4$ eV, $kT_2=137\pm7$ eV, $R_1=5.4_{-0.9}^{+1.3}$ km and $R_2=0.70_{-0.13}^{+0.15}$ km (for a distance of 1.2 kpc). We found no evidence for absorption lines as those observed in the shorter XMM-Newton observations ($\sim$67 ks) of this pulsar carried out in 2006. The X-ray thermal and non-thermal components peak in anti-phase and none of them is seen to coincide in phase with the radio pulse. This, coupled with the small difference in the emission radii of the two thermal components, disfavors an interpretation in which the dipolar polar cap is heated by magnetospheric backward-accelerated particles. Comparison with the other thermally-emitting isolated neutron stars with spectra well described by the sum of two components shows that the ratios $T_2$/$T_1$ and $R_2$/$R_1$ are similar for objects of different classes. The observed values cannot be reproduced with simple temperature distributions, such as those caused by a dipolar field, indicating the presence of more complicated thermal maps.