论文标题

两阶段匹配调整的间接比较

Two-stage matching-adjusted indirect comparison

论文作者

Remiro-Azócar, Antonio

论文摘要

锚定协变量调整后的间接比较为报销决定提供了报销决定,在这些决策中,感兴趣的治疗方法之间没有头对头试验,研究有一个共同的比较机构,并且存在患者级的数据限制。匹配调整的间接比较(MAIC)是最广泛使用的协变量调整间接比较方法。 MAIC的精度较差,并且当加权后的有效样本量很小时,效率低下。提出了一个模块化向MAIC的模块化延伸,称为两阶段匹配调整的间接比较(2SMAIC)。这使用两个参数模型。一个人使用单个患者数据(IPD)估计研究中的治疗分配机制,另一个估计试验分配机制。由此产生的权重试图平衡治疗组之间和整个研究之间的协变量。一项仿真研究提供了在两个随机试验中进行的间接比较中的原理证明,并首次探讨了重量截断与MAIC结合使用的使用。尽管在IPD试验中执行了随机分组并了解了真正的治疗分配机制,但在所有情况下,2SMAIC产量在MAIC方面却提高了精度和效率,同时保持了类似低水平的偏见。当IPD试验中的样本量较低时,两阶段的方法是有效的,因为它可以控制研究臂之间的预后基线协变量的机会失衡。当试验目标人群之间的重叠较差,而权重的末端很高时,这并不那么有效。在这些情况下,截断会导致实质性的精度和效率提高,但引起了相当大的偏见。两阶段方法与截断的结合产生了最高的精度和效率提高。

Anchored covariate-adjusted indirect comparisons inform reimbursement decisions where there are no head-to-head trials between the treatments of interest, there is a common comparator arm shared by the studies, and there are patient-level data limitations. Matching-adjusted indirect comparison (MAIC) is the most widely used covariate-adjusted indirect comparison method. MAIC has poor precision and is inefficient when the effective sample size after weighting is small. A modular extension to MAIC, termed two-stage matching-adjusted indirect comparison (2SMAIC), is proposed. This uses two parametric models. One estimates the treatment assignment mechanism in the study with individual patient data (IPD), the other estimates the trial assignment mechanism. The resulting weights seek to balance covariates between treatment arms and across studies. A simulation study provides proof-of-principle in an indirect comparison performed across two randomized trials and explores the use of weight truncation in combination with MAIC for the first time. Despite enforcing randomization and knowing the true treatment assignment mechanism in the IPD trial, 2SMAIC yields improved precision and efficiency with respect to MAIC in all scenarios, while maintaining similarly low levels of bias. The two-stage approach is effective when sample sizes in the IPD trial are low, as it controls for chance imbalances in prognostic baseline covariates between study arms. It is not as effective when overlap between the trials' target populations is poor and the extremity of the weights is high. In these scenarios, truncation leads to substantial precision and efficiency gains but induces considerable bias. The combination of a two-stage approach with truncation produces the highest precision and efficiency improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源