论文标题
Monge-ampère措施的Abelian品种曲折指标
Monge-Ampère measures for toric metrics on abelian varieties
论文作者
论文摘要
Abelian品种$ a $的线条上的曲线指标是来自Raynaud的统一理论的自然圆环动作下的不变指标。我们在这里计算相关的Monge-ampère措施,以限制任何$ a $的封闭子变量。这概括了第一作者从规范指标到复曲率指标以及从离散的估值到任意非架构的非一切本领域所做的规范措施的计算。
Toric metrics on a line bundle of an abelian variety $A$ are the invariant metrics under the natural torus action coming from Raynaud's uniformization theory. We compute here the associated Monge-Ampère measures for the restriction to any closed subvariety of $A$. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary non-archimedean fields.