论文标题

部分可观测时空混沌系统的无模型预测

PolyLoss: A Polynomial Expansion Perspective of Classification Loss Functions

论文作者

Leng, Zhaoqi, Tan, Mingxing, Liu, Chenxi, Cubuk, Ekin Dogus, Shi, Xiaojie, Cheng, Shuyang, Anguelov, Dragomir

论文摘要

当训练深层神经网络以解决分类问题时,跨凝性损失和局灶性损失是最常见的选择。但是,总的来说,良好的损失功能可以采用更灵活的表格,应针对不同的任务和数据集进行量身定制。通过如何通过泰勒的扩展来近似功能,我们提出了一个名为Polyloss的简单框架,以将损失函数视为多项式函数的线性组合。我们的polyross允许根据目标任务和数据集的不同多项式碱基的重要性,同时自然累积了上述跨凝结损失和焦点损失作为特殊情况。广泛的实验结果表明,polyross内的最佳选择确实取决于任务和数据集。只需引入一个额外的高参数并添加一行代码,我们的Poly-1公式就超过了2D图像分类,实例分割,对象检测和3D对象检测任务的交叉渗透丢失和焦点损失,有时是大余量。

Cross-entropy loss and focal loss are the most common choices when training deep neural networks for classification problems. Generally speaking, however, a good loss function can take on much more flexible forms, and should be tailored for different tasks and datasets. Motivated by how functions can be approximated via Taylor expansion, we propose a simple framework, named PolyLoss, to view and design loss functions as a linear combination of polynomial functions. Our PolyLoss allows the importance of different polynomial bases to be easily adjusted depending on the targeting tasks and datasets, while naturally subsuming the aforementioned cross-entropy loss and focal loss as special cases. Extensive experimental results show that the optimal choice within the PolyLoss is indeed dependent on the task and dataset. Simply by introducing one extra hyperparameter and adding one line of code, our Poly-1 formulation outperforms the cross-entropy loss and focal loss on 2D image classification, instance segmentation, object detection, and 3D object detection tasks, sometimes by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源