论文标题
部分可观测时空混沌系统的无模型预测
Accurate Model of the Projected Velocity Distribution of Galaxies in Dark Matter Halos
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present a percent-level accurate model of the line-of-sight velocity distribution of galaxies around dark matter halos as a function of projected radius and halo mass. The model is developed and tested using synthetic galaxy catalogs generated with the UniverseMachine run on the Multi-Dark Planck 2 N-body simulations. The model decomposes the galaxies around a cluster into three kinematically distinct classes: orbiting, infalling, and interloping galaxies. We demonstrate that: 1) we can statistically distinguish between these three types of galaxies using only projected line-of-sight velocity information; 2) the halo edge radius inferred from the line-of-sight velocity dispersion is an excellent proxy for the three-dimensional halo edge radius; 3) we can accurately recover the full velocity dispersion profile for each of the three populations of galaxies. Importantly, the velocity dispersion profiles of the orbiting and infalling galaxies contain five independent parameters -- three distinct radial scales and two velocity dispersion amplitudes -- each of which is correlated with mass. Thus, the velocity dispersion profile of galaxy clusters has inherent redundancies that allow us to perform nontrivial systematics check from a single data set. We discuss several potential applications of our new model for detecting the edge radius and constraining cosmology and astrophysics using upcoming spectroscopic surveys.