论文标题
湍流边界层的孔隙分辨模拟在可渗透和不可渗透的沉积床上流动
Pore-resolved simulations of turbulent boundary layer flow over permeable and impermeable sediment beds
论文作者
论文摘要
进行了湍流开放通道流的孔隙分辨直接数值模拟,以比较不可渗透的粗糙和光滑壁上的湍流的结构和动力学与渗透性雷诺数($ re_k $)为2.6的多孔沉积物床,Aquicate床的代表。研究了四种配置;也就是说,(i)具有随机堆积沉积物谷物的可渗透床,(ii)不可渗透的墙,其完整的粗糙度元件与沉积物床的顶层匹配,(iii)不可渗透的墙,带有一半的粗糙度元素,以及(iv)光滑的壁。使用双重平均方法来计算平均速度,雷诺应力,形式诱导的应力和动荡的动能预算。可以观察到,对于可渗透的床位和不可渗透的层壁案例,代表上升流的平均速度,雷诺应力和形式诱导的压力效率相关性在大小上是相似的。然而,对于不可渗透的一半层的情况,与可渗透床的情况相比,壁阻塞效应会导致较高的流向和较低的壁正常应力。床粗糙度增加了雷诺剪切应力,而渗透性的影响很小。与雷诺应力相比,床渗透性显着影响形式引起的剪切应力。床剪应力统计表明,与光滑的壁相比,可渗透床和粗糙的壁箱中极端事件的可能性增加。研究结果表明,通过至少考虑至少考虑沉积物的顶层,可以更好地捕获床的渗透率对低音交换的建模及其对床剪切和压力波动的影响有重大影响。
Pore-resolved direct numerical simulations of turbulent open channel flow are performed comparing the structure and dynamics of turbulence over impermeable rough and smooth walls to a porous sediment bed at permeability Reynolds number ($Re_K$) of 2.6, representative of aquatic beds. Four configurations are investigated; namely, (i) permeable bed with randomly packed sediment grains, (ii) an impermeable-wall with full layer of roughness elements matching the top layer of the sediment bed, (iii) an impermeable-wall with half layer of roughness elements , and (iv) a smooth wall. A double-averaging methodology is used to compute the mean velocity, Reynolds stresses, form-induced stresses, and turbulent kinetic energy budget. It is observed that the mean velocity, Reynolds stresses, and form-induced pressure-velocity correlations representing upwelling and downwelling fluxes are similar in magnitude for the permeable-bed and impermeable-full layer wall cases. However, for the impermeable-half layer case, the wall blocking effect results in higher streamwise and lower wall-normal stresses compared to the permeable-bed case. Bed roughness increases Reynolds shear stress whereas permeability has minimal influence. Bed permeability, in contrast to Reynolds stresses, significantly influences form-induced shear stress. Bed shear stress statistics show that probability of extreme events increases in permeable bed and rough wall cases as compared to the smooth wall. Findings suggest that bed permeability can have significant impact on modeling of hyporheic exchange and its effect on bed shear and pressure fluctuations are better captured by considering at least the top layer of sediment.