论文标题

高于$ \aleph_Ω$的高原类型

Cofinal types below $\aleph_ω$

论文作者

Shalev, Roy

论文摘要

事实证明,对于每个正整数$ n $,非tukey等效的基数$ \ leq \ leq \ aleph_n $的数量至少为$ c_ {n+2} $,$(n+2)$ - catalan编号。此外,Tukey类$ \ MATHCAL D _ {\ ALEPH_N} $ of DIRECTED基数的基数$ \ leq \ Aleph_n $包含dyck $(n+2)$路径的Poset的同构副本。此外,我们提供了一个完整的描述,该副本中的两个连续元素是否包含另一个在之间的定向设置。

It is proved that for every positive integer $n$, the number of non-Tukey-equivalent directed sets of cardinality $\leq \aleph_n$ is at least $c_{n+2}$, the $(n+2)$-Catalan number. Moreover, the Tukey class $\mathcal D_{\aleph_n} $ of directed sets of cardinality $\leq \aleph_n$ contains an isomorphic copy of the poset of Dyck $(n+2)$-paths. Furthermore, we give a complete description whether two successive elements in the copy contain another directed set in between or not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源