论文标题
准静态弹性元面的拓扑边缘状态
Topological edge states of quasiperiodic elastic metasurfaces
论文作者
论文摘要
在这项工作中,我们研究了准弹性弹性元面的动态行为和拓扑特性,即根据准碘的空间分布,在弹性半空间的自由表面上排列的机械振荡器阵列。开发了一个临时的多个散射公式,以描述雷利波与一般表面谐振器阵列之间的动态相互作用。该方法允许计算准碘元表的固有频率光谱,该频率揭示了频率差距的分形分布,让人联想到霍夫斯塔特蝴蝶。这些差距具有非平凡的拓扑特性,可以托管类似瑞利的边缘模式。我们证明,这种受拓扑保护的边缘模式可以通过phason的平滑变化从一个边界驱动到阵列的对面,phason的平滑变化是调节阵列几何形状的参数。根据这些原理设计的拓扑弹性波导为振动控制,能量收集和无损信号传输等方面的声波工程提供了新的机会。
In this work, we investigate the dynamic behavior and the topological properties of quasiperiodic elastic metasurfaces, namely arrays of mechanical oscillators arranged over the free surface of an elastic half-space according to a quasiperiodic spatial distribution. An ad-hoc multiple scattering formulation is developed to describe the dynamic interaction between Rayleigh waves and a generic array of surface resonators. The approach allows to calculate the spectrum of natural frequencies of the quasiperiodic metasurface which reveals a fractal distribution of the frequency gaps reminiscent of the Hofstadter butterfly. These gaps have nontrivial topological properties and can host Rayleigh-like edge modes. We demonstrate that such topologically protected edge modes can be driven from one boundary to the opposite of the array by a smooth variation of the phason, a parameter which modulates the geometry of the array. Topological elastic waveguides designed on these principles provide new opportunities in surface acoustic wave engineering for vibration control, energy harvesting, and lossless signal transport, among others.