论文标题

几何代数的扭曲代数

Twisted algebras of geometric algebras

论文作者

Matsuno, Masaki

论文摘要

扭曲系统是研究分级代数的主要工具之一,但是,如果发电机和关系给出了分级代数,通常很难构建(非代数)扭曲系统。在本文中,我们表明几何代数的扭曲代数取决于其点的某些自动形态。作为一种应用,我们将扭曲的代数分类为$ 3 $维数的几何artin-schelter常规代数,直到分级代数同构。

A twisting system is one of the major tools to study graded algebras, however, it is often difficult to construct a (non-algebraic) twisting system if a graded algebra is given by generators and relations. In this paper, we show that a twisted algebra of a geometric algebra is determined by a certain automorphism of its point variety. As an application, we classify twisted algebras of $3$-dimensional geometric Artin-Schelter regular algebras up to graded algebra isomorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源