论文标题
在稳定层层的行星岩心层中的指法对流
Fingering convection in the stably-stratified layers of planetary cores
论文作者
论文摘要
由于温度梯度是局部亚蚀,要么是由于化学元件的分离来维持稳定的组成梯度,因此许多行星的电导流体层的顶部可能存在稳定的层层。在这里,考虑到温度梯度稳定的汞核心情况,在如此稳定的层中,我们研究了两次稳定层的两次扩散过程,但组成梯度在800公里厚的层上是不稳定的。分子扩散率的巨大差异导致浮力驱动的不稳定性的发展,这些不稳定性驱动了被称为指法对流的径向流动。我们使用流体动力学模拟在旋转的球形壳中进行对流对流,并改变旋转速率和分层强度。对于小瑞利数字(即背景温度较弱和组成梯度),指法对流采用与旋转轴对齐的柱状流的形式,并且具有与层厚度相当的方位角尺寸。对于较大的瑞利数字,流量保留了柱状结构,但方位角大小却大大降低,导致在子午方向上伸长的薄板状结构。当热分层增加时,随着线性非旋转平面理论的预期比例定律,方位角长度会减小(Stern,1960)。我们发现,径向流始终保持层流,局部雷诺数为1-10。由于轴对称成分的纬度变化,赤道对称的区域流形成。区域速度超过最大雷利数的非轴对称速度。我们讨论对行星磁场的合理意义。
Stably-stratified layers may be present at the top of the electrically-conducting fluid layers of many planets either because the temperature gradient is locally subadiabatic or because a stable composition gradient is maintained by the segregation of chemical elements. Here we study the double-diffusive processes taking place in such a stable layer, considering the case of Mercury's core where the temperature gradient is stable but the composition gradient is unstable over a 800km-thick layer. The large difference in the molecular diffusivities leads to the development of buoyancy-driven instabilities that drive radial flows known as fingering convection. We model fingering convection using hydrodynamical simulations in a rotating spherical shell and varying the rotation rate and the stratification strength. For small Rayleigh numbers (i.e. weak background temperature and composition gradients), fingering convection takes the form of columnar flows aligned with the rotation axis and with an azimuthal size comparable with the layer thickness. For larger Rayleigh numbers, the flows retain a columnar structure but the azimuthal size is drastically reduced leading to thin sheet-like structures that are elongated in the meridional direction. The azimuthal length decreases when the thermal stratification increases, following closely the scaling law expected from the linear non-rotating planar theory (Stern, 1960). We find that the radial flows always remain laminar with local Reynolds number of order 1-10. Equatorially-symmetric zonal flows form due to latitudinal variations of the axisymmetric composition. The zonal velocity exceeds the non-axisymmetric velocities at the largest Rayleigh numbers. We discuss plausible implications for planetary magnetic fields.