论文标题

基于ASP的声明过程挖掘(扩展摘要)

ASP-Based Declarative Process Mining (Extended Abstract)

论文作者

Chiariello, Francesco, Maggi, Fabrizio Maria, Patrizi, Fabio

论文摘要

我们提出答案集编程(ASP),作为从声明过程挖掘(DPM)领域建模和解决问题的方法。我们在这里考虑三个经典问题,即日志生成,一致性检查和查询检查。从控制流和数据感知的角度解决了这些问题。该方法基于过程规范为(有限状态)自动机的表示。由于这些表达方式比事实上的DPM标准规范语言声明更具表现力,因此可以处理比典型的DPM的规格,例如在有限痕迹上的线性时间时间逻辑中的公式。 (在第36届AAAI人工智能会议的会议记录中提供完整版本)。

We propose Answer Set Programming (ASP) as an approach for modeling and solving problems from the area of Declarative Process Mining (DPM). We consider here three classical problems, namely, Log Generation, Conformance Checking, and Query Checking. These problems are addressed from both a control-flow and a data-aware perspective. The approach is based on the representation of process specifications as (finite-state) automata. Since these are strictly more expressive than the de facto DPM standard specification language DECLARE, more general specifications than those typical of DPM can be handled, such as formulas in linear-time temporal logic over finite traces. (Full version available in the Proceedings of the 36th AAAI Conference on Artificial Intelligence).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源