论文标题

在分发数据流中的连续模型完善中

On Continual Model Refinement in Out-of-Distribution Data Streams

论文作者

Lin, Bill Yuchen, Wang, Sida, Lin, Xi Victoria, Jia, Robin, Xiao, Lin, Ren, Xiang, Yih, Wen-tau

论文摘要

实际需要不断更新现实世界的自然语言处理(NLP)模型,以解决分布外(OOD)数据流中的预测错误,同时克服灾难性遗忘。但是,现有的持续学习(CL)问题设置无法涵盖如此现实且复杂的方案。为此,我们提出了一种称为连续模型改进(CMR)的新的CL问题配方。与先前的CL设置相比,CMR更实用,并引入了独特的挑战(边界 - 不合时宜的和非平稳的分布移动,多个OOD数据簇的混合物,以错误为中心的流等级等)。我们将几种现有的CL方法扩展到CMR设置,并广泛评估它们。对于基准测试和分析,我们提出了一种一般采样算法,以获得具有可控非平稳性的动态OOD数据流以及一组测量在线性能的各个方面的指标。我们的实验和详细分析揭示了CMR问题的希望和挑战,支持在动态OOD流中研究CMR可以使生产中部署的NLP模型的寿命有益。

Real-world natural language processing (NLP) models need to be continually updated to fix the prediction errors in out-of-distribution (OOD) data streams while overcoming catastrophic forgetting. However, existing continual learning (CL) problem setups cannot cover such a realistic and complex scenario. In response to this, we propose a new CL problem formulation dubbed continual model refinement (CMR). Compared to prior CL settings, CMR is more practical and introduces unique challenges (boundary-agnostic and non-stationary distribution shift, diverse mixtures of multiple OOD data clusters, error-centric streams, etc.). We extend several existing CL approaches to the CMR setting and evaluate them extensively. For benchmarking and analysis, we propose a general sampling algorithm to obtain dynamic OOD data streams with controllable non-stationarity, as well as a suite of metrics measuring various aspects of online performance. Our experiments and detailed analysis reveal the promise and challenges of the CMR problem, supporting that studying CMR in dynamic OOD streams can benefit the longevity of deployed NLP models in production.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源