论文标题

在嵌入式系统上进行实时交通标志和交通灯检测

Towards Real-time Traffic Sign and Traffic Light Detection on Embedded Systems

论文作者

Jayasinghe, Oshada, Hemachandra, Sahan, Anhettigama, Damith, Kariyawasam, Shenali, Wickremasinghe, Tharindu, Ekanayake, Chalani, Rodrigo, Ranga, Jayasekara, Peshala

论文摘要

在交通标志和交通信号灯检测方面完成的最新工作集中在提高复杂方案的检测准确性上,但许多人无法提供实时性能,特别是在计算资源有限的情况下。在这项工作中,我们提出了一个简单的基于深度学习的端到端检测框架,该框架有效地应对交通标志和交通灯检测所固有的挑战,例如小规模,大量的类和复杂的道路场景。我们使用Tensorrt优化检测模型,并与机器人操作系统集成,以在Nvidia Jetson Agx Xavier上部署为嵌入式设备。总体系统的高推理速度每秒达到63帧,这表明了我们系统实时执行的能力。此外,我们介绍了Ceyro,这是斯里兰卡环境的第一个大规模交通标志和交通灯检测数据集。我们的数据集由7984个图像组成,其中包含10176个交通标志和交通灯实例,其中涵盖了70个交通标志和5个交通灯类别。这些图像具有1920 x 1080的高分辨率,并捕获了具有不同天气和照明条件的各种具有挑战性的道路。我们的工作可在https://github.com/oshadajay/ceyro上公开获得。

Recent work done on traffic sign and traffic light detection focus on improving detection accuracy in complex scenarios, yet many fail to deliver real-time performance, specifically with limited computational resources. In this work, we propose a simple deep learning based end-to-end detection framework, which effectively tackles challenges inherent to traffic sign and traffic light detection such as small size, large number of classes and complex road scenarios. We optimize the detection models using TensorRT and integrate with Robot Operating System to deploy on an Nvidia Jetson AGX Xavier as our embedded device. The overall system achieves a high inference speed of 63 frames per second, demonstrating the capability of our system to perform in real-time. Furthermore, we introduce CeyRo, which is the first ever large-scale traffic sign and traffic light detection dataset for the Sri Lankan context. Our dataset consists of 7984 total images with 10176 traffic sign and traffic light instances covering 70 traffic sign and 5 traffic light classes. The images have a high resolution of 1920 x 1080 and capture a wide range of challenging road scenarios with different weather and lighting conditions. Our work is publicly available at https://github.com/oshadajay/CeyRo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源