论文标题

激子 - phonon互动要求对“激子”概念进行修订

Exciton-phonon interaction calls for a revision of the "exciton" concept

论文作者

Paleari, Fulvio, Marini, Andrea

论文摘要

\ textIt {光学}激子的概念 - 晶体中的光激发绑定的电子孔对通常用于解释和建模半导体中的大量激发现象。除了在光谱中发起的子带间隙特征外,还可以预测光学激子还可以凝结,扩散,重组,放松。但是,所有这些现象都基于以下简单图片植根于对激子状态的理论定义:“激子”是实际粒子,它们在线性吸收光谱中都显示为峰,并且表现得很好。相反,我们在本文中表明,电子 - phonon相互作用将初始光学激子分解为\ textit {elemental}激子,后者是另一种类型的结合电子孔对,缺乏由诱导的,经典的电场引起的效果。从相互作用的电子哈密顿量(包括电子 - 孔子和电子孔相互作用)开始的多体扰动理论方法中证明了这一点。然后,我们将结果应用于两个逼真的系统,即单层MOS $ _2 $(最低限制的激子在光学上是不活动的)和单层Mose $ _2 $(它具有光学上的活动),使用First-principles方法来计算Ixpiton-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon-Phonon辅助矩阵元素。在光学元素分解的后果中,我们指出的是,即使对于最低的光学激子,也出现了吸收峰的均匀扩大,我们通过计算激子 - phonon转变速率来证明这一点。更普遍的是,我们的发现表明,光学激子逐渐失去其初始结构,并作为元素激子发展。这些状态可以被视为相互作用系统的真正内在激发,即当外部扰动和诱导的电场消失时生存的状态。

The concept of \textit{optical} exciton - a photo-excited bound electron-hole pair within a crystal - is routinely used to interpret and model a wealth of excited-state phenomena in semiconductors. Beside originating sub-band gap signatures in optical spectra, optical excitons have also been predicted to condensate, diffuse, recombine, relax. However, all these phenomena are rooted on a theoretical definition of the excitonic state based on the following simple picture: "excitons" are actual particles that both appear as peaks in the linear absorption spectrum and also behave as well-defined quasiparticles. In this paper we show, instead, that the electron-phonon interaction decomposes the initial optical excitons into \textit{elemental} excitons, the latter being a different kind of bound electron-hole pairs lacking the effect caused by the induced, classical, electric field. This is demonstrated within a many-body perturbation theory approach starting from the interacting electronic Hamiltonian including both electron-phonon and electron-hole interactions. We then apply the results on two realistic systems, monolayer MoS$_2$ (where the lowest-bound exciton is optically inactive) and monolayer MoSe$_2$ (where it is optically active), using first-principles methods to compute the exciton-phonon coupling matrix elements. Among the consequences of optical-elemental decomposition, we point to a homogeneous broadening of absorption peaks occurring even for the lowest-bound optical exciton, we demonstrate this by computing exciton-phonon transition rates. More generally, our findings suggest that the optical excitons gradually lose their initial structure and evolve as elemental excitons. These states can be regarded as the real intrinsic excitations of the interacting system, the ones that survive when the external perturbation and the induced electric fields have vanished.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源