论文标题
与物理可区分的软体型操作的联系点发现
Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
论文作者
论文摘要
最近显示了可区分物理学作为解决软体型操纵任务的强大工具。但是,当最终效应子的初始接触点是次优的或执行需要接触点切换的多阶段任务时,通常会卡住的物理求解器通常会卡住,这通常会导致局部最小值。为了应对这一挑战,我们提出了一种接触点发现方法(CPDEFORM),该方法可以指导独立的可区分物理求解器以变形各种软体型塑料。我们方法的关键思想是将基于最佳传输的接触点发现集成到可区分的物理求解器中,以从初始接触点或接触切换中克服本地最小值。在单阶段任务上,我们的方法可以根据运输优先级自动找到合适的初始联系点。在复杂的多阶段任务上,我们可以根据运输优先级迭代切换最终效应的联系点。为了评估我们方法的有效性,我们引入了塑料中的M-M,该塑料将现有的可区分物理基准塑料扩展到七个新的具有挑战性的多阶段软体体型操纵任务。广泛的实验结果表明:1)关于香草可分割物理求解器不可行的多阶段任务,我们的方法发现了有效指导求解器完成的接触点; 2)关于香草求解器在次优或近距离执行的任务上,我们的触点发现方法的执行效果要比手工制作的接触点获得的操作性能更好或相同。
Differentiable physics has recently been shown as a powerful tool for solving soft-body manipulation tasks. However, the differentiable physics solver often gets stuck when the initial contact points of the end effectors are sub-optimal or when performing multi-stage tasks that require contact point switching, which often leads to local minima. To address this challenge, we propose a contact point discovery approach (CPDeform) that guides the stand-alone differentiable physics solver to deform various soft-body plasticines. The key idea of our approach is to integrate optimal transport-based contact points discovery into the differentiable physics solver to overcome the local minima from initial contact points or contact switching. On single-stage tasks, our method can automatically find suitable initial contact points based on transport priorities. On complex multi-stage tasks, we can iteratively switch the contact points of end-effectors based on transport priorities. To evaluate the effectiveness of our method, we introduce PlasticineLab-M that extends the existing differentiable physics benchmark PlasticineLab to seven new challenging multi-stage soft-body manipulation tasks. Extensive experimental results suggest that: 1) on multi-stage tasks that are infeasible for the vanilla differentiable physics solver, our approach discovers contact points that efficiently guide the solver to completion; 2) on tasks where the vanilla solver performs sub-optimally or near-optimally, our contact point discovery method performs better than or on par with the manipulation performance obtained with handcrafted contact points.